如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
二次根式咸阳启迪家教魏老师:qq914053077一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如,等是无理式,而,,等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等.一般地,与,与,与互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式的意义将下列式子化为最简二次根式:(1);(2);(3).解:(1);(2);(3).例2计算:.解法一:=====.解法二:=====.例3试比较下列各组数的大小:(1)和;(2)和.解:(1)∵,,又,∴<.(2)∵又4>2eq\r(2),∴eq\r(6)+4>eq\r(6)+2eq\r(2),∴<.例4化简:.解:====.例5化简:(1);(2).解:(1)原式.(2)原式=,∵,∴,所以,原式=.例6已知,求的值.解:∵,,∴.练习1.填空:(1)=_____;(2)若,则的取值范围是_____;(3)_____;(4)若,则________.2.选择题:等式成立的条件是()(A)(B)(C)(D)3.若,求的值.4.比较大小:2-eq\r(3)eq\r(5)-eq\r(4)(填“>”,或“<”).