2019版高考数学(理)创新大一轮浙江专版教师用书:第八章 第5节 直线、平面垂直的判定及其性质 WORD版含解析.doc
上传人:韶敏****ab 上传时间:2024-09-12 格式:DOC 页数:20 大小:1.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2019版高考数学(理)创新大一轮浙江专版教师用书:第八章 第5节 直线、平面垂直的判定及其性质 WORD版含解析.doc

2019版高考数学(理)创新大一轮浙江专版教师用书:第八章第5节直线、平面垂直的判定及其性质WORD版含解析.doc

预览

免费试读已结束,剩余 10 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第5节直线、平面垂直的判定及其性质最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知识梳理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面α内的任意直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥a,l⊥b,a∩b=O,a⊂α,b⊂α))⇒l⊥α性质定理两直线垂直于同一个平面,那么这两条直线平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))⇒a∥b2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,l⊂β))⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,α∩β=a,l⊥a,l⊂β))⇒l⊥α[常用结论与微点提醒]1.垂直关系的转化2.直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)过一点有且只有一条直线与已知平面垂直.(5)过一点有且只有一个平面与已知直线垂直.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(必修2P56A组7T改编)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项易知均是正确的.答案D3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l,故选C.答案C4.(2017·全国Ⅲ卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析如图,由题设知,A1B1⊥平面BCC1B1且BC1⊂平面BCC1B1,从而A1B1⊥BC1,又B1C⊥BC1,且A1B1∩B1C=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1.答案C5.(2017·浙江名校协作体联考)已知矩形ABCD,AB=1,BC=eq\r(2).将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若AB⊥CD,BC⊥CD,则可得CD⊥平面ACB,因此有CD⊥AC.因为AB=1,BC=AD=eq\r(2),CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD.答案B6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平
立即下载