2022届高考数学大一轮基础复习之最新省市模拟精编(三十七)直线、平面垂直的判定与性质(含解析).doc
上传人:是你****芹呀 上传时间:2024-09-12 格式:DOC 页数:12 大小:1.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2022届高考数学大一轮基础复习之最新省市模拟精编(三十七)直线、平面垂直的判定与性质(含解析).doc

2022届高考数学大一轮基础复习之最新省市模拟精编(三十七)直线、平面垂直的判定与性质(含解析).doc

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022精编复习题(三十七)直线、平面垂直的判定与性质小题常考题点——准解快解][小题常考题点——准解快解]1.(2021·广东广州模拟)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若m⊥α,m∥n,n∥β,则α⊥βC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若α∥β,m⊂α,n⊂β,则m∥n解析:选B若α⊥β,m⊂α,n⊂β,则m与n相交、平行或异面,故A错误;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正确;若m⊥n,m⊂α,n⊂β,则α与β的位置关系不确定,故C错误;若α∥β,m⊂α,n⊂β,则m∥n或m,n异面,故D错误.故选B.2.(2021·湖南一中月考)下列说法错误的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过直线外一点有且只有一个平面与已知直线垂直C.如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直D.如果两条直线和一个平面所成的角相等,则这两条直线一定平行解析:选D如果两条直线和一个平面所成的角相等,这两条直线可以平行、相交、异面.3.如图,在斜三棱柱ABC­A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A连接AC1(图略),由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面的交线AB上.4.(2021·河北唐山模拟)如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥平面EFHB.AH⊥平面EFHC.HF⊥平面AEFD.HG⊥平面AEF解析:选B根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥AEF,过点H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.5.如图,直三棱柱ABC­A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为()A.eq\f(1,2)B.1C.eq\f(3,2)D.2解析:选A设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=eq\r(2),设Rt△AA1B1斜边AB1上的高为h,则DE=eq\f(1,2)h.又2×eq\r(2)=heq\r(22+\r(2)2),所以h=eq\f(2\r(3),3),DE=eq\f(\r(3),3).在Rt△DB1E中,B1E=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(3),3)))2)=eq\f(\r(6),6).由面积相等得eq\f(\r(6),6)×eq\r(x2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2)=eq\f(\r(2),2)x,得x=eq\f(1,2).6.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线是____________;与AP垂直的直线是________.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,又∵AP⊂平面PAC,∴AB⊥AP,与AP垂直的直线是AB.答案:AB,BC,ACAB7.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:如图,连接AC,BD,则AC⊥BD,∵PA⊥底面ABCD,∴PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC,∴BD⊥PC,∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM