专题对点练习河南郑州桐柏一中数学九年级下册锐角三角函数同步测试B卷(详解版).docx
上传人:雅云****彩妍 上传时间:2024-09-12 格式:DOCX 页数:8 大小:292KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

专题对点练习河南郑州桐柏一中数学九年级下册锐角三角函数同步测试B卷(详解版).docx

专题对点练习河南郑州桐柏一中数学九年级下册锐角三角函数同步测试B卷(详解版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

河南郑州桐柏一中数学九年级下册锐角三角函数同步测试考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、若tanA=2,则∠A的度数估计在()A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间2、已知锐角α满足tan(α+10°)=1,则锐角用α的度数为()A.20°B.35°C.45°D.50°3、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则∠A的正切值是()A.B.C.2D.4、△ABC中,tanA=1,cosB=,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形5、如图,在中,,点D为AB边的中点,连接CD,若,,则的值为()A.B.C.D.6、如图,AB是的直径,点C是上半圆的中点,,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为()A.B.C.D.7、如图,为测量小明家所住楼房的楼高,小明从楼底A出发先沿水平方向向左行走到达点C,再沿坡度的斜坡行走104米到达点D,在D处小明测得楼底点A处的俯角为,楼顶最高处B的仰角为,所在的直线垂直于地面,点A、B、C、D在同一平面内,则的高度约为()米.(参考数据:,,,,,)A.104B.106C.108D.1108、如图,在Rt△ABC中,∠C=90°,,BC=1,以下正确的是()A.B.C.D.9、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为()A.atanB.C.D.cos10、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是:_____.2、如图,在中,点D是BC中点,点E、F分别在AB、AC上,连接DE、DF、EF,,,,,则EF的长为______.3、某人沿着坡度为1∶2.4的斜坡向上前进了130m,那么他的高度上升了_________m.4、在半径为1的⊙O中,弦AB、AC分别是和,则∠BAC的度数是________.5、如图,在△ABC中,I是△ABC的内心,O是AB边上一点,⊙O经过点B且与AI相切于点I,若tan∠BAC=,则sin∠ACB的值为_____.6、如图,等边的边长为2,点O是的中心,,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:①;②四边形的面积始终等于;③;④周长的最小值为3.其中正确的结论是________(填序号).7、第6号台风“烟花”于2021年7月25日12时30分前后登陆舟山普陀区,登陆时强度为台风级,中心最大风速38米/秒.此时一艘船以27nmile/h的速度向正北航行,在A处看烟花S在船的北偏东15°方向,航行40分钟后到达B处,在B处看烟花S在船的北偏东45°方向.(1)此时A到B的距离是_____;(2)该船航行过程中距离烟花S中心的最近距离为_____.(提示:sin15°).8、如图,小明沿着坡度的坡面由到直行走了13米时,他上升的高度_______米.9、cos30°的相反数是_____.10、比较大小:tan46°_____cos46°.三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离cm.2、如图,⊙O是△ABC的外接圆,点D在OC的延长线上,OD与AB相交于E,cosA=,∠D=30°.(1)证明:BD是⊙O的切线;(2)若OD⊥AB,AC=3,求BD的长.3、如图,在平行四边形ABCD中,,过点B作于E,连结AE,,F为AE上一
立即下载