数学建模优秀论文.doc
上传人:sy****28 上传时间:2024-09-13 格式:DOC 页数:3 大小:20KB 金币:14 举报 版权申诉
预览加载中,请您耐心等待几秒...

数学建模优秀论文.doc

数学建模优秀论文.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

14 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

数学建模比赛预选赛B题温室中的绿色生态臭氧病虫害防治2009年12月,哥本哈根国际气候大会在丹麦举行之后,温室效应再次成为国际社会的热点。如何有效地利用温室效应来造福人类,减少其对人类的负面影响成为全社会的聚焦点。臭氧对植物生长具有保护与破坏双重影响,其中臭氧浓度与作用时间是关键因素,臭氧在温室中的利用属于摸索探究阶段。假设农药锐劲特的价格为10万元/吨,锐劲特使用量10mg/kg-1水稻;肥料100元/亩;水稻种子的购买价格为5.60元/公斤,每亩土地需要水稻种子为2公斤;水稻自然产量为800公斤/亩,水稻生长自然周期为5个月;水稻出售价格为2.28元/公斤。根据背景材料和数据,回答以下问题:(1)在自然条件下,建立病虫害与生长作物之间相互影响的数学模型;以中华稻蝗和稻纵卷叶螟两种病虫为例,分析其对水稻影响的综合作用并进行模型求解和分析。(2)在杀虫剂作用下,建立生长作物、病虫害和杀虫剂之间作用的数学模型;以水稻为例,给出分别以水稻的产量和水稻利润为目标的模型和农药锐劲特使用方案。(3)受绿色食品与生态种植理念的影响,在温室中引入O3型杀虫剂。建立O3对温室植物与病虫害作用的数学模型,并建立效用评价函数。需要考虑O3浓度、合适的使用时间与频率。(4)通过分析臭氧在温室里扩散速度与扩散规律,设计O3在温室中的扩散方案。可以考虑利用压力风扇、管道等辅助设备。假设温室长50m、宽11m、高3.5m,通过数值模拟给出臭氧的动态分布图,建立评价模型说明扩散方案的优劣。(5)请分别给出在农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析报告,字数800-1000字。1论文题目:温室中的绿色生态臭氧病虫害防治姓名1:万微姓名1:卢众姓名1:张强学号:08101107专业:数学与应用数学学号:08101116专业:数学与应用数学学号:08101127专业:数学与应用数学2010年5月3日目录2一.摘要..............................................................................................................................................3二.问题的提出..................................................................................................................................5三.问题的分析..................................................................................................................................5四.建模过程......................................................................................................................................61)问题一.................................................................................................................................61.模型假设........................................................................................................................62.定义符号说明................................................................................................................63.模型建立........................................................................................................................64.模型求解.....................................................................................