初中数学教案板书设计多篇.docx
上传人:lj****88 上传时间:2024-09-14 格式:DOCX 页数:12 大小:16KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

初中数学教案板书设计多篇.docx

初中数学教案板书设计多篇.docx

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学教案板书设计多篇【导语】初中数学教案板书设计多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。初中数学教学教案篇一圆柱、圆锥、圆台和球总课题空间几何体总课时第2课时分课题圆柱、圆锥、圆台和球分课时第2课时目标了解圆柱、圆锥、圆台和球的有关概念、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征。重点难点圆柱、圆锥、圆台和球的概念的理解。1引入新课1、下面几何体有什么共同特点或生成规律?这些几何体都可看做是一个平面图形绕某一直线旋转而成的。2、圆柱、圆锥、圆台和球的'有关概念。3、圆柱、圆锥、圆台和球的表示。4、旋转体的有关概念。1、例题剖析例1如图,将直角梯形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?例2指出图、图中的几何体是由哪些简单的几何体构成的、图图例3直角三角形中,将三角形分别绕边,三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?2、巩固练习1、指出下列几何体分别由哪些简单几何体构成。2、如图,将平行四边形绕边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?3、充满气的车轮内胎可以通过什么图形旋转生成?1、课堂小结圆柱、圆锥、圆台和球的有关概念及图形特征。2、课后训练一基础题1、下列几何体中不是旋转体的是()2、图中的几何体可由一平面图形绕轴旋转形成,该平面图形是()ABCD3、用平行与圆柱底面的平面截圆柱,截面是_____________________________________.4、_____________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体、5、用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是_________。6、如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的。二提高题7、请指出图中的几何体是由哪些简单几何体构成的。三能力题8、如图,将直角梯形绕、边所在直线旋转一周,由此形成的几何体分别是由哪些简单几何体构成的?ADCB图1A图2DBC初中数学教学教案篇二教学目标:1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。教学重点:使学生准确、熟炼、灵活地运用切线的判定方法及其性质。教学难点:学生对题目不能准确地进行论证。证题中常会出现不知如何入手,不知往哪个方向证的情形。教学过程:一、新课引入:我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题。二、新课讲解:实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤。p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线。分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形。所以辅助线应该是连结oc.只要证od⊥cd即可。亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果。而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等。∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证。证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴。p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切。分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点。这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切。题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的。练习一p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切。分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况。这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,