(word完整版)初中数学九大几何模型.doc
上传人:一只****呀盟 上传时间:2024-09-11 格式:DOC 页数:15 大小:86KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(word完整版)初中数学九大几何模型.doc

(word完整版)初中数学九大几何模型.doc

预览

免费试读已结束,剩余 5 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

初中数学九大几何模型手拉手模型----旋转型全等等边三角形【条件】:△OAB和△OCD均为等边三角形;【结论】:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED等腰直角三角形【条件】:△OAB和△OCD均为等腰直角三角形;【结论】:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED顶角相等的两任意等腰三角形【条件】:△OAB和△OCD均为等腰三角形;且∠COD=∠AOB【结论】:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED模型二:手拉手模型----旋转型相似一般情况【条件】:CD∥AB,将△OCD旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC交BD于点E,必有∠BEC=∠BOA特殊情况【条件】:CD∥AB,∠AOB=90°将△OCD旋转至右图的位置【结论】:①右图中△OCD∽△OAB→→→△OAC∽△OBD;②延长AC交BD于点E,必有∠BEC=∠BOA;③tan∠OCD;④BD⊥AC;⑤连接AD、BC,必有;⑥模型三、对角互补模型全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC平分∠AOB【结论】:①CD=CE;②OD+OE=OC;③证明提示:①作垂直,如图2,证明△CDM≌△CEN②过点C作CF⊥OC,如图3,证明△ODC≌△FEC※当∠DCE的一边交AO的延长线于D时(如图4):以上三个结论:①CD=CE;②OE-OD=OC;③全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC平分∠AOB【结论】:①CD=CE;②OD+OE=OC;③证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB上取一点F,使OF=OC,证明△OCF为等边三角形。全等型-任意角ɑ【条件】:①∠AOB=2ɑ,∠DCE=180-2ɑ;②CD=CE;【结论】:①OC平分∠AOB;②OD+OE=2OC·cosɑ;③※当∠DCE的一边交AO的延长线于D时(如右下图):原结论变成:①;②;③。可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。对角互补模型总结:①常见初始条件:四边形对角互补,注意两点:四点共圆有直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③注意OC平分∠AOB时,∠CDE=∠CED=∠COA=∠COB如何引导?模型四:角含半角模型90°角含半角模型90°---1【条件】:①正方形ABCD;②∠EAF=45°;【结论】:①EF=DF+BE;②△CEF的周长为正方形ABCD周长的一半;也可以这样:【条件】:①正方形ABCD;②EF=DF+BE;【结论】:①∠EAF=45°;角含半角模型90°---2【条件】:①正方形ABCD;②∠EAF=45°;【结论】:①EF=DF-BE;角含半角模型90°---3【条件】:①Rt△ABC;②∠DAE=45°;【结论】:(如图1)若∠DAE旋转到△ABC外部时,结论仍然成立(如图2)角含半角模型90°变形【条件】:①正方形ABCD;②∠EAF=45°;【结论】:△AHE为等腰直角三角形;证明:连接AC(方法不唯一)∵∠DAC=∠EAF=45°,∴∠DAH=∠CAE,又∵∠ACB=∠ADB=45°;∴△DAH∽△CAE,∴∴△AHE∽△ADC,∴△AHE为等腰直角三角形模型五:倍长中线类模型倍长中线类模型---1【条件】:①矩形ABCD;②BD=BE;③DF=EF;【结论】:AF⊥CF模型提取:①有平行线AD∥BE;②平行线间线段有中点DF=EF;可以构造“8”字全等△ADF≌△HEF。倍长中线类模型---2【条件】:①平行四边形ABCD;②BC=2AB;③AM=DM;④CE⊥AB;【结论】:∠EMD=3∠MEA辅助线:有平行AB∥CD,有中点AM=DM,延长EM,构造△AME≌△DMF,连接CM构造等腰△EMC,等腰△MCF。(通过构造8字全等线段数量及位置关系,角的大小转化)模型六:相似三角形360°旋转模型(1)相似三角形(等腰直角)360°旋转模型---倍长中线法【条件】:①△ADE、△ABC均为等腰直角三角形;②EF=CF;【结论】:①DF=BF;②DF⊥BF辅助线:延长DF到点G,使FG=DF,连接CG、BG、BD,证明△BDG为等腰直角三角形;突破点:△ABD≌△CBG;难点:证明∠BAO=∠BCG(2)相似三角形(等腰直角)3