如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
八年级上册数学教学计划八年级上册数学教学计划实用[15篇]日子如同白驹过隙,我们的工作又将迎来新的进步,是时候开始写计划了。计划怎么写才不会流于形式呢?下面是小编为大家整理的八年级上册数学教学计划,仅供参考,大家一起来看看吧。八年级上册数学教学计划1一、教学目标(一)知识目标1.会用计算器求平方根和立方根.2.经历运用计算器探求数学规律的活动,发展合情推理的能力.(二)能力训练目标1.鼓励学生能积极参与数学学习活动,对数学有好奇心与求知欲.2.鼓励学生自己探索计算器的用法,并能熟悉用法.3.能用计算器探索有关规律的问题,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.(三)情感与价值观目标让学生经历运用计算器的.活动,培养学生探索规律的能力,发展学生合理推理的能力.二、教学重点、难点1.探索计算器的用法.2.用计算器探求数学规律.三、教学方法学生自主探究法.四、教学过程(一)新课导入我们在前几节课分别学习了平方根和立方根的定义,还知道乘方与开方是互为逆运算.比如23=8,2叫8的立方根,8叫2的立方,有时可以根据逆运算来求方根或平方、立方.对于10以内数的立方,20以内数的平方要求大家牢记在心,这样可以根据逆运算快速地求出这些特殊数的平方根或立方根,那么对于不特殊的数我们应怎么求其方根呢?可以根据估算的方法来求,但是这样求方根的速度太慢,这节课我们就学习一种快速求方根的方法,用计算器开方.(二)新课讲解【师】请大家互相看一下计算器,拿类型相同的计算器的同学请坐到一起.这样便于大家互相讨论问题.如果你的计算器的类型与书中的计算器的类型相同,请你按照书中的步骤熟悉一下程序,若你的计算器的类型不同于书中的计算器,请拿相同类型计算器的同学先要探索一下如何求平方根、立方根的步骤,把程序记下来,好吗?给大家8分钟时间进行探索.五、课堂小结1.探索用计算器求平方根和立方根的步骤,并能熟练地进行操作.2.经历运用计算器探求数学规律的活动,发展合情推理的能力.八年级上册数学教学计划2一、教材分析:第十一章三角形本章主要学习与三角形有关的线段、角及多边形的内角和等内容。本章重点:三角形有关线段、角及多边形的内角和的性质与应用。本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。第十二章全等三角形本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。第十三章轴对称本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。第十四章整式的乘法和因式分解本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。第十五章分式本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。教学重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。二、学情分析:从上学期的期末考试来看,学生的普遍成绩趋于中下游,数学基础一般,基础知识掌握不牢固,在错题难题方面更显能力不足,班级数学学习积极性差,数学作业完成质量低,数学提升空间很大。根据以往的经验,学生在广泛的深入的理解基础上使知识在各个方面建立起有机的联系,是最不容易忘记的,但现在的要求中,学生在这方面还是有所缺失的。最令担心的是班级中的差生的学习,无论如何要尽可能的使他们跟上班级体整体前进的步伐。在学习能力上,学生课外主动获取知识的能力有所进步,前一学期鼓动孩子们去买自己喜欢的参考书,通过自己的努力,一部分孩子的数学有了较为显著的提高,本学期也要继续鼓励有条件的孩子拓宽自己的知识视野,使孩子们在这个初中阶段这个最重要的一年里能更上一层楼。三、教学目标:1、知识与技能目标学生通过三角形、掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的.学习初步建立数形结合的思维模式。2、过程与方法目标本学期针对不同的情况,根据学生的掌握的情况及教材的地位与作用采用比较灵活的教学方法,主要采用启发式教学,以激起学生的学习知识的积极性,培养学生的独立思考、自学能力为主,主要有:1、学生猜想与学生动手操作相结合。2、学生独立思考与教师指导相结合。3、理论与实际相结合。4、面向全体学生