Greedy Algorithms(2).ppt
上传人:sy****28 上传时间:2024-09-15 格式:PPT 页数:25 大小:5.7MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

Greedy Algorithms(2).ppt

GreedyAlgorithms(2).ppt

预览

免费试读已结束,剩余 15 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Chapter4GreedyalgorithmsTopic:HuffmancodesHuffmancodesHuffmancodesHuffmancodesHuffmancodesHuffmancodesHuffmancodesHuffmancodesHuffmancodesSingle-SourceShortestPathsGivenaweighted,directedgraphG=(V,E),withweightfunctionw:E→Rmappingedgestoreal-valued-weights.GivenavertexinV,calledthesourcevertex.Nowweneedtocalculateallotherverticesfromthesourcetothelengthoftheshortestpath.Theweightofpathp=v0,v1,...,vkisthesumoftheweightsofitsconstituentedges.ThisproblemisusuallyreferredtoasSingle-SourceShortestPaths.Dijkstraalgorithmisthegreedyalgorithmforthesolutionofsingle-sourceshortestpathproblem.ThebasicideaistosetthevertexsetSandexpandthecollectionbycontinuallymakinggreedychoices.AvertexbelongingtothesetSifandonlyiftheknownlengthoftheshortestpathfromthesourcetothevertex.Theinitial,Scontainsonlysourcevertex.AssumeuisavertexinG,theroadthatfromsourcetouandthroughtheSverticesiscalledspecialpathfromsourcetou,andusethearraydisttorecordthecorrespondingshortestspecialpathlengthofeachvertex.DijkstraalgorithmeverytimetakesoutvertexuthathastheshortestspecialpathlengthfromtheV-S,putuaddtoS,andatthesametimedosomenecessarymodificationsonthearraydist.OnceScontainsallofVvertices,thearraydisthasrecordedthelengthoftheshortestpathfromthesourcetoallothervertices.forinstance:adirectedgraph,useDijkstraalgorithmtocalculatetheShortestpathfromthesourcevertexatoothervertices.Destinationmin←selectedtheshorestpathlength//UpdateotherverticesshortestpathIf(!final[w]&&(min+G.arcs[v][w]<Dist[w]))Dist[w]←min+G.arcs[v][w]Path[w]←Path[v]+<v,w>MinimumSpanningTreesPrimealgorithmvoidPrim(intn,Type*c){T←ØS←{1}while(S!=V){(i,j)←theminimumedgeofi∈Sandj∈V-ST←T{(i,j)};S←S{j};}}AssumeG=(V,E)isaconnected,undirectedgraphwithareal-valuedweight.V={1,2,…,n}.accordingtotheweightofGfromsmalltolargeorder;MinimumSpanningTrees