如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
古代人的数学介绍关于古代人的数学介绍中国是世界著名的文明古国,和古巴比伦、埃及和印度一样,她也是人类文化的发源地之一。数学作为中国文化的重要组成部分,她的起源可以追溯到遥远的古代。下面小编为您带来古代人的数学介绍!古代人的数学介绍古时候中国人做乘法,有一种类似于竖式的方便算法,叫做“铺地锦”。在中国古典文学长篇小说《镜花缘》第79回里,就有一段利用“铺地锦”求圆周长的故事。在小说中,有几位小姐妹聚在一起谈论数学。其中一位名叫青钿的,指着面前的圆桌,问道:“请教姐姐,这桌周围几尺?”被问的人叫做米兰芬,她向身边的宝云要过一把尺来,量出圆桌面的直径,是三尺二寸。然后取笔画了一个“铺地锦”,画完后,回答说:“此桌周围一丈零零四分八。”(1米=3尺,1丈=10尺,1尺=10寸)在图1里,左边是《镜花缘》书中画出的“铺地锦”,右边是我们把它改写成现代记号以后,得到的乘法竖式。从图中可以看出,“铺地锦”是在一个大的长方形里面,画了些纵横格子线,还画了连结方格对角的斜线,形状有点儿像铺在房间里的地毯,所以形象地叫做“铺地锦”。通过将图中左边的“铺地锦”和右边的乘法竖式对照,可以看出,虽然它们一个是中装,一个是西装,形式不同,实际内容却几乎完全一致。竖式中的被乘数和乘数,在“铺地锦”图里,分别写在大长方形边框的右边和上边。大长方形的4条边中,右边的和上面的两条,相当于乘法竖式里的第一道横线。在竖式里,撇开小数点不管,用乘数的各位数字2和3分别去乘被乘数314,得到的628和942,各写一行,行自为战。所得的各行,顺次向左错开一位,然后上下对齐相加。在“铺地锦”图中,大长方形里面竖的两排格子,自上而下,顺次写着用乘数的每一位去乘被乘数的每一位,得到的6、2、8和9、3、12,这些位与位的乘积,每个各占一格,格自为战。所得的这些格子,纵横对齐排列,沿对角斜线错位相加。在竖式的第二道横线上面画了3个小圆圈,这是在运算过程中,进位时做的记号。这些小圆圈记号在“铺地锦”里也有反映,表现为左边竖排3格斜线上面的3个“一”。竖式里的最后得数10.048,在“铺地锦”图里,是在大长方形边框的左边和下面,从左上往下,再往右,连起来读。大长方形的左面一条边和下面一条边,相当于竖式的第二条横线。画完了“铺地锦”图,相当于写完了乘法竖式。所以,《镜花缘》里的米兰芬画完“铺地锦”后,就能说出圆桌的周长是1丈零4分8厘(≈3.35米)。古代数学发展历程魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。隋炀帝好大喜功,大兴土木,客观上