2021中考数学压轴题全揭秘精品专题10-三角形问题.docx
上传人:猫巷****熙柔 上传时间:2024-09-11 格式:DOCX 页数:66 大小:4.4MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021中考数学压轴题全揭秘精品专题10-三角形问题.docx

2021中考数学压轴题全揭秘精品专题10-三角形问题.docx

预览

免费试读已结束,剩余 56 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

决胜2021中考数学压轴题全揭秘精品【典例分析】【考点1】三角形基础知识【例1】(2019·浙江中考真题)若长度分别为的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【答案】C【解析】【分析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.【变式1-1】(2019·北京中考真题)如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)【答案】1.9【解析】【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,(cm2).故答案为:1.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.【变式1-2】(2019·山东中考真题)把一块含有角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若,则_______.【答案】68【解析】【分析】由等腰直角三角形的性质得出∠A=∠C=45°,由三角形的外角性质得出∠AGB=68°,再由平行线的性质即可得出∠2的度数.【详解】如图,∵是含有角的直角三角板,∴,∵,∴,∵,∴;故答案为68.【点睛】此题主要考查了等腰直角三角形的性质、平行线的性质以及三角形的外角性质,关键是掌握两直线平行,同位角相等.【考点2】全等三角形的判定与性质的应用【例2】(2019·山东中考真题)在中,,,于点.(1)如图1,点,分别在,上,且,当,时,求线段的长;(2)如图2,点,分别在,上,且,求证:;(3)如图3,点在的延长线上,点在上,且,求证:.【答案】(1);(2)见解析;(3)见解析.【解析】【分析】(1)根据等腰三角形的性质、直角三角形的性质得到AD=BD=DC=,求出∠MBD=30°,根据勾股定理计算即可;(2)证明△BDE≌△ADF,根据全等三角形的性质证明;(3)过点M作ME∥BC交AB的延长线于E,证明△BME≌△AMN,根据全等三角形的性质得到BE=AN,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:,,,,,,,,,,,,由勾股定理得,,即,解得,,;(2)证明:,,,在和中,,;(3)证明:过点作交的延长线于,,则,,,,,,在和中,,,,.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.【变式2-1】(2019·贵州中考真题)(1)如图①,在四边形中,,点是的中点,若是的平分线,试判断,,之间的等量关系.解决此问题可以用如下方法:延长交的延长线于点,易证得到,从而把,,转化在一个三角形中即可判断.,,之间的等量关系________;(2)问题探究:如图②,在四边形中,,与的延长线交于点,点是的中点,若是的平分线,试探究,,之间的等量关系,并证明你的结论.【答案】(1);(2),理由详见解析.【解析】【分析】(1)先根据角平分线的定义和平行线的性质证得,再根据AAS证得≌,于是,进一步即得结论;(2)延长交的延长线于点,如图②,先根据AAS证明≌,可得,再根据角平分线的定义和平行线的性质证得,进而得出结论.【详解】解:(1).理由如下:如图①,∵是的平分线,∴∵,∴,∴,∴.∵点是的中点,∴,又∵,∴≌(AAS),∴.∴.故答案为:.(2).理由如下:如图②,延长交的延长线于点.∵,∴,又∵,,∴≌(AAS),∴,∵是的平分线,∴,∵,∴,∴,∵,∴.【点睛】本题考查了全等三角形的判定和性质、平行线的性质、角平分线的定义和等角对等边等知识,添加恰当辅助线构造全等三角形是解本题的关键.【变式2-2】(2019·广西中考真题)如图,,点在上.(1)求证:平分;(2)求证:.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【详解】解:(1)在与中,∴∴即平
立即下载