2021中考数学压轴题全揭秘精品专题13-圆的有关位置关系.docx
上传人:长春****主a 上传时间:2024-09-11 格式:DOCX 页数:78 大小:4.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021中考数学压轴题全揭秘精品专题13-圆的有关位置关系.docx

2021中考数学压轴题全揭秘精品专题13-圆的有关位置关系.docx

预览

免费试读已结束,剩余 68 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

决胜2021中考数学压轴题全揭秘精品【考点1】点与圆的位置关系【例1】(2018·浙江中考真题)用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.【变式1-1】(2016·湖北中考真题)在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、GB.F、G、HC.G、H、ED.H、E、F【答案】A【解析】试题分析:根据圆与直线的位置关系可得:点E、F、G在圆内,点H在圆外.考点:点与圆的位置关系【变式1-2】(2017·山东中考真题)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.B.C.D.【答案】B【解析】试题分析:给各点标上字母,如图所示.AB==,AC=AD==,AE==,AF==,AG=AM=AN==5,∴时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.故选B.考点:点与圆的位置关系;勾股定理;推理填空题.【考点2】直线与圆的位置关系【例2】(2018·黑龙江中考真题)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.【答案】0<m<【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m<6,解得m<,故答案为0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.【变式2-1】(2019·广东中考真题)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【答案】C【解析】【分析】首先判断点与圆的关系,然后再分析P可作⊙O的切线条数即可解答.【详解】解:因为点P到O的距离为2,大于半径1,所以点P在圆外,所以,过点P可作⊙O的切线有2条;故选C.【点睛】本题考查了点与圆的关系、切线的定义,熟练掌握是解题的关键.【变式2-2】(2019·浙江中考真题)如图,中,,,点在边上,,.点是线段上一动点,当半径为6的圆与的一边相切时,的长为________.【答案】或【解析】【分析】根据勾股定理得到,,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.【详解】∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.
立即下载