如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第七章热压烧结热压烧结的发展7.1热压烧结的发展热压烧结优点:许多陶瓷粉体(或素坯)在烧结过程中,由于烧结温度的提高和烧结时间的延长,而导致晶粒长大。与陶瓷无压烧结相比,热压烧结能降低烧结和缩短烧结时间,可获得细晶粒的陶瓷材料。例:热压氮化硅材料的抗弯强度和断裂韧性分别可达1100MPa和9MPa·m1/2;热压氧化错增韧陶瓷的抗弯强度和断裂韧性分别为1500MPa和15MPa·m1/2。此外,一些含有易挥发组分的陶瓷,如氧化铅、氧化锌和某些氮化物,以及用纤维、晶须、片状晶粒、颗粒弥散强化的陶瓷基复合材料,用热压工艺比用无压烧结容易获得高致密的材料。7.2热压烧结的原理7.2.1热压烧结的概念固相烧结(solidstatesintering)是指松散的粉末或经压制具有一定形状的粉末压坯被置于不超过其熔点的设定温度中在一定的气氛保护下,保温一段时间的操作过程。所设定的温度为烧结温度,所用的气氛称为烧结气氛,所用的保温时间称为烧结时间。施加外压力的烧结,简称加压烧结(appliedpressure)or(pressure—assistedsintering)热压是指在对置于限定形状的石墨模具中的松散粉末或对粉末压坯加热的同时对其施加单袖压力的烧结过程。热压法容易获得接近理论密度、气孔率接近于零的烧结体,容易得到细晶粒的组织,容易实现晶体的取向效应和控制台有高蒸气压成分纳系统的组成变化,因而容易得到具有良好机械性能、电学性能的产品。能生产形状较复杂、尺寸较精确的产品。7.2.2热压烧结的原理1一般烧结过程,总伴随着气孔率的降低,颗粒总表面积减少,表面自由能减少及与其相联系的晶粒长大等变化,可根据其变化特点来划分烧结阶段。随着传质的继续,粒界进一步发育扩大,气孔则逐渐缩小和变形,最终转变成孤立的闭气孔。与此同时颗粒粒界开始移动,粒子长大,气孔逐渐迁移到粒界上消失,但深入晶粒内部的气孔则排除比较难。烧结体致密度提高,坯体可以达到理论密度的95%左右。2(1)本征过剩表面能驱动力代入晶体材料的摩尔质量Wm(g/mol),固-气表面能γsv(J/m2),粉末比表面Sp(cm2/g),致密固体密度d(g/cm3),则有:表7-1典型粉末的本征驱动力ΔE及计算参考数值在不同种粉末之间比较颗粒系统的烧结活性时,不要忘记单个颗粒的烧结活性即粉末晶体的自扩散性.综合考虑这两个因素来确定烧结活性,有一个判据是值得注意的。例如,Dv的数量级为10-12cm2/s,则粉末粒度要在lμm左右。如果Dv太低,则某些共价键材枓(如Si的Dv为10-14cm2/s)若要充分地烧结致密化就要求使用粒度0.5μm左右的粉末。一般金属粉末的Dv比陶瓷粉末的Dv大,因而金属粉末的粒度可以粗些.而陶瓷则须细粉末才能获得好的烧结结果,这与烧结经验是完全吻合的。(2)本征Laplace应力烧结开始时,孔洞的形状并不是球形,面是由尖角形.圆滑菱形.近球形莲浙向球形过渡,如图7-2所示。此时,孔洞的收缩必然伴随着颗粒捶触区的扩展。这个接触区最先被称作金属颗粒之间的“桥”.旋即被Kuczynski,定义为颈(neck)。颗粒之间接触的直接结果是颈部出现了曲率半径;Laplace和Young以弯曲液体表面为例,给出了表面的曲率半径、表面张力和表面所受的应力差值。对于一个球形孔洞,R1=R2,则变为Gibbs的解释。对于不加压团相烧结的颗粒系统,由颗粒接触形成的曲率半径对Laplace应力有重要影响.颗粒接触形成的颈如图8.3所示。图7.3中,x表示接触面积的半径,ρ表示颈部的曲率半径,即式中的R1与R2,则颗粒接触的本征Laplace应力为:同时可注意到,颈部凹表面拉伸应力σ的存在,相当于有压应力ρ作用在两球接触面的中心线上.使两球靠近。人们常常对颈部的拉伸应力为负号感到难以理解,因为安连续力学定义,拉伸应力为正,压应力为负。(3)化学位梯度驱动力用化学位梯度来定义烧结过程的热力学驱动力具有普遍意义。对于多相系统,犹豫化学组元的加入引起自由能变化,及由于外部施加应力引起的自由能变化,都可以用化学位的差来计算323(1)颗粒的黏附作用由此可见,黏附是固体表面的普遍性质,它起因于固体表面力。当两个表面靠近到表面力场作用范围时既发生键合黏附。黏附力的大小直接取决于物体表面能和接触面积,故粉状物料间的黏附作用特别显著。让两个表面均润湿一层水膜的球形粒子彼此接触,水膜将在水的表面张力作用下变形,使两个颗粒迅速拉紧靠拢聚合。在这个过程中水膜的总表面积减少了δs,系统总表面积降低了γδs,在两个颗粒间形成了一个曲率半径为ρ的透镜状接触区(通常称颈部)。对于没有水膜的固体粒子,因固体的刚性使它不能像水膜那样迅速而明显的变形,然而相似的作用仍然发生。(2)物质的传递过程具有弯曲表面的颗