直线的方程教学反思.docx
上传人:lj****88 上传时间:2024-09-12 格式:DOCX 页数:26 大小:25KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

直线的方程教学反思.docx

直线的方程教学反思.docx

预览

免费试读已结束,剩余 16 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

直线的方程教学反思直线的方程教学反思身为一位到岗不久的教师,我们要在课堂教学中快速成长,写教学反思能总结我们的教学经验,如何把教学反思做到重点突出呢?以下是小编帮大家整理的直线的方程教学反思,希望对大家有所帮助。直线的方程教学反思1在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y=kx+b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y=kx+b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的`初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y=kx+b.殊不知,如今行情已经变了,需要“与时俱进”一下了.由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧.另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.直线的方程教学反思2在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式。作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的。而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。对直线的方程的'教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。直线的方程教学反思3依据教学过程、指导教师及学生的反馈信息,本人对本节课有如下几点反思:一、成功之处根据实际教学过程反映,学生对本节课教授知识点能充分吸收、掌握,课堂学习气氛活跃。第一、重点突出学生活动。在教学过程中,我设计了五个活动环节:(1)回顾数轴三要素,理解数轴上点的坐标的几何意义;(2)通过类比进行直线参数方程的探究活动;(3)直线参数方程的形成;(4)直线参数方程的简单应