18.3 一次函数的图像(华东师大版八年级下)doc--初中数学.doc
上传人:13****88 上传时间:2024-09-15 格式:DOC 页数:5 大小:95KB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

18.3 一次函数的图像(华东师大版八年级下)doc--初中数学.doc

18.3一次函数的图像(华东师大版八年级下)doc--初中数学.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数一次函数的图象知识技能目标1.理解一次函数和反比例函数的图象是一条直线;2.熟练地作出一次函数和反比例函数的图象,掌握k与b的取值对直线位置的影响.过程性目标1.经历一次函数的作图过程,探索某些一次函数图象的异同点;2.体会用类比的思想研讨一次函数,体验研讨数学问题的常用方法:由特殊到普通,由简单到复杂.教学过程一、创设情境前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.(1);(2);(3)y=3x;(4)y=3x+2.同学们观察并互相讨论,并回答:你所画出的图象是什么外形.二、探究归纳观察上面四个函数的图象,发现它们都是直线.请同学举例对你们的发现作出验证.一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).特别地,反比例函数y=kx(k≠0)是经过原点的一条直线.问几点可以确定一条直线?答两点.结论那么今后画一次函数图象时只需取两点,过两点画一条直线就可以了.请同学们在同一平面直角坐标系中画出下列函数的图象.(1)y=-x、y=-x+1与y=-x-2;(2)y=2x、y=2x+1与y=2x-2.通过观察发现:(1)第一组三条直线互相平行,第二组的三条直线也互相平行.为什么呢?由于每一组的三条直线的k相同;还可以看出,直线y=-x+1与y=-x-2是由直线y=-x分别向上挪动1个单位和向下挪动2个单位得到的;而直线y=2x+1与y=2x-2是由直线y=2x分别向上挪动1个单位和向下挪动2个单位得到的.(2)y=-x与y=2x、y=-x+1与y=2x+1、y=-x-2与y=2x-2的交点在同一点,为什么呢?由于每两条直线的b相同;而直线与y轴的交点纵坐标取决于b.所以,两个一次函数,当k一样,b不一样时(如y=-x、y=-x+1与y=-x-2;y=2x、y=2x+1与y=2x-2),有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下挪动得到;不同点:它们与y轴的交点不同.而当两个一次函数,b一样,k不一样时(如y=-x与y=2x、y=-x+1与y=2x+1、y=-x-2与y=2x-2),有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行.三、实践运用例1在同一平面直角坐标系中画出下列每组函数的图象.(1)y=2x与y=2x+3;(2)y=3x+1与.解注画出图象后,同学间互相讨论、交流,看看是否与上面的结果一样.想一想(1)上面每组中的两条直线有什么关系?(2)你取的是哪几个点,互相交流,看谁取的点比较简便.通过比较,老师点拨,得出结论:普通情况下,要取直线与x轴、y轴的交点比较简便.例2直线分别是由直线经过怎样的挪动得到的.分析只需k相同,直线就平行,一次函数y=kx+b(k≠0)是由反比例函数的图象y=kx(k≠0)经过向上或向下平移个单位得到的.b>0,直线向上移;b<0,直线向下移.解是由直线向上平移3个单位得到的;而是由直线向下平移5个单位得到的.例3说出直线y=3x+2与;y=5x-1与y=5x-4的相同的地方.分析k相同,直线就平行.b相同,直线与y轴交于同一点,且交点坐标为(0,b).解直线y=3x+2与的b相同,所以这两条直线与y轴交于同一点,且交点坐标为(0,2);直线y=5x-1与y=5x-4的k都是5,所以这两条直线互相平行.例4画出直线y=-2x+3,借助图象找出:(1)直线上横坐标是2的点;(2)直线上纵坐标是-3的点;(3)直线上到y轴距离等于1的点.解(1)直线上横坐标是2的点是A(2,-1);(2)直线上纵坐标是-3的点B(3,-3);(3)直线上到y轴距离等于1的点C(1,1)和D(-1,5).四、交流反思通过这节课的学习,我们学到了哪些新知识?1.一次函数的图象是一条直线.2.画一次函数图象时,只需取两个点即可,普通取直线与x轴、y轴的交点比较简便.3.两个一次函数,当k一样,b不一样时,共同的地方是直线平行,都是由直线y=kx(k≠0)向上或向下挪动得到,不同的地方是它们与y轴的交点不同;当b一样,k不一样时,共同的地方是它们与y轴交于同一点(0,b),不同的地方是直线不平行.五、检测反馈1.在同一坐标系中画出下列函数的图象,并说出它们有什么关系?(1)y=―2x;(2)y=―2x―4.2.(1)将直线y=3x向下平移2个单
立即下载