如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
一元一次方程教案精品多篇[编辑]一元一次方程教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。元一次方程教案篇一【教学目标】1.进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;2.学会合并(同类项)及移项,会解"ax+bx=c"及"ax+b=cx+d"类型的一元一次方程;3.初步体会一元一次方程的应用价值,感受数学文化;4.理解解方程的目标,体会解法中蕴涵的化归思想。探索1等式一边的项可以移到等式的另一边吗?例如:3+5=8这是一个等式。把左边的一项"3"移到右边,得到什么式子?这时等式成立吗?如果把"3"变号后移到的另一边呢?换一个等式-6-7=-13试一试。任写一个等式再试一试。探索2(1)方程x+3=-1的解是多少?(1)把方程x+3=-1中左边的常数项”3”移到右边,就得到方程x=-1+3.所得的方程的解与原方程的解一样吗?探索3怎样求方程x-7=5的解?有的学生可能还是乐意用算术解法,教师要有足够的耐心。甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差。所以有x=5+7(理由是_______________________),于是x=12.乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.议一议,三种解法,你乐意用哪一种?归纳解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项。注意:移项的要点不在移动,而在于变号。想一想:移项为什么要变号?移项的根据是什么?探索4以下各方程的“移项”对不对?为什么?(1)x+5=7,移项得x=7+5;(2)3-x=7,移项得-x=7-3;(3)2x=7x,移项得2x+7x=0;(4)2x=7x-6,移项得2x-7x=-6.探索5移项的目的是把方程化为ax=b的形式,以下的“移项”都达不到预期的目的。你认为应该怎样做才对?(1)3x+6=0,移项得0=-3x-6;(2)3x=5x-7,移项得3x+7=5x;(3)3-x=5x,移项得3-x-5x=0;(4)3x+20=7x-18,移项得-7x+18=-3x-20.例题学习P81.例1练习P81.练习作业P84.习题2,3,9补充作业1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的`两位数比原两位数大36.求原两位数。解:设原两位数十位上的数为x,那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,则原两位数记为___________.因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.根据新两位数比原两位数大36,列方程:_____________________.解这个方程得__________.答:______________________________.2.小调查今年6月份你家的固定电话的收费是多少?找出发票,看看费用当中具体分为哪几项?元一次方程教案篇二教学目的:理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。重点、难点1、重点:弄清应用题题意列出方程。2、难点:弄清应用题题意列出方程。教学过程一、复习1、什么叫一元一次方程?2、解一元一次方程的理论根据是什么?二、新授。例1、如图(课本)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。分析:设应从A盘内拿出盐x,可列表帮助分析。等量关系;A盘现有盐=B盘现有盐完成后,可让学生反思,检验所求出的解是否合理。(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?引导学生弄清题意,疏理已知量和未知量:1、题目中有哪些已知量?(1)参加搬砖的初一同学和其他年级同学共65名。(2)初一同学每人搬6块,其他年级同学每人搬8块。(3)初一和其他年级同学一共搬了400块。2、求什么?初一同学有多少人参加搬砖?3、等量关系是什么?初一同学搬砖的块数十其他年级同学的搬砖数=400如果设初一同学有工人参加搬砖,→←那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)