柔性多体系统动力学的若干热点问题.pdf
上传人:qw****27 上传时间:2024-09-12 格式:PDF 页数:10 大小:236KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

柔性多体系统动力学的若干热点问题.pdf

柔性多体系统动力学的若干热点问题.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第29卷第2期力学进展Vol.29No.21999年5月25日ADVANCESINMECHANICSMay25,1999柔性多体系统动力学的若干热点问题3于清洪嘉振上海交通大学工程力学系,上海200030摘要全面综述了柔性多体系统动力学近年来的研究成果.对建模方法、模态选取及模态综合、动力刚化及柔性多体系统动力学中微分-代数方程的数值方法等研究热点进行了详细的阐述,并简要展望了柔性多体系统动力学今后的发展趋势.关键词柔性多体系统动力学,建模方法,模态,模态综合,动力刚化,微分2代数方程,数值方法1前言柔性多体系统动力学研究由刚体和柔性体组成的复杂机械系统在经历大范围空间运动时的动力学行为,是多刚体系统动力学的自然延伸和发展.它主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.柔性体的变形运动与柔性体大范围空间运动的同时出现及其相互耦合是柔性多体系统动力学的本质特征,这个特征使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学,是两者的结合与推广.柔性多体系统动力学是与经典动力学、结构动力学、控制理论及计算机技术紧密相联的一门新兴交叉学科,在航空航天、机器人、高速机构及车辆等各个领域有着广泛的应用,成为目前理论和应用力学最活跃的分支之一.虽然柔性多体系统动力学的模型可分别退化为多刚体系统动力学模型和结构动力学模型,但并非二者的简单结合.柔性体大范围空间运动与其弹性变形之间耦合的机理仍需深入研究,且这种耦合给动力学建模及数值计算带来了许多困难,使柔性多体系统与上述两种系统有本质不同的动力学特性.如何更为准确、高效地建立柔性多体系统的动力学模型,如何对柔性体进行模态选取与模态综合,如何处理柔性体经历大范围空间运动时的动力刚化问题,以及针对柔性多体系统动力学数学模型的数值方法的研究是柔性多体系统动力学的研究热点.本文主要针对上述问题进行详细深入的评述,以期较为全面地反映近年来国内外柔性多体系统动力学的研究现状.2柔性多体系统动力学的建模方法柔性多体系统动力学的建模方法同多刚体系统动力学相似,也可分为绝对坐标和相对坐标收稿日期:1997209221,修回日期:19982022243国家自然科学基金和教育部高等学校博士点专项科研基金资助项目·541·©1995-2005TsinghuaTongfangOpticalDiscCo.,Ltd.Allrightsreserved.两种方法,所不同的是在每种方法中均引入了有限元节点坐标或模态坐标以表示柔性体的变形.A.A.Shabana等[1]用绝对坐标法建立了柔性多体系统的动力学模型,该方法用一致质量有限元方法对柔性体进行离散,柔性体的大范围转动用Euler四元数来描述.绝对坐标方法具有程式化好、编程方便的优点,许多学者[2,3]的建模方法与此类似.但该方法广义坐标和约束方程较多,计算工作量较大,尤其对大型复杂系统,计算效率较差.E.J.Haug在用铰相对坐标建立多刚体系统动力学模型[4]的基础上,根据矢量变分方法(Variational2VectorCalcu2lusMethod)[5]和虚功原理,采用铰相对坐标加模态坐标的方法,建立了开环及含闭环的柔性多体系统的动力学模型[6,7].该方法对柔性体用集中质量有限元方法进行离散,用Euler四元数描述柔性体的大范围转动.相对坐标方法具有动力学方程广义坐标和约束方程少、计算效率高的优点,但是程式化较绝对坐标方法差.潘振宽、洪嘉振和刘延柱等[8,9]根据Jourdain变分原理,建立了绝对坐标下单柔体的动力学方程,利用递推关系,提出了相对坐标形式的树形柔性多体系统动力学的单向递推组集建模方法,并将其发展到含闭环的柔性多体系统中[10,11].该方法充分利用了绝对坐标方法建模的程式化形式,以单向递推组集的方法建立系统的动力学方程,具有较高的计算效率.对于闭环系统,该方法建立了绝对坐标下的切断铰约束库,利用递推关系将其转换到铰相对坐标和模态坐标上,得到了微分-代数形式的闭环柔性多体系统动力学方程.3模态选取及模态综合在柔性多体系统动力学中,如何描述柔性体的变形是非常重要的.最初的做法是直接将有限元节点坐标作为柔性体变形的广义坐标,这种做法的缺点是动力学方程中广义坐标的数目庞大,对于复杂的大型结构,这种做法使得数值积分几乎不可能进行.为此需要引入结构动力学中的坐标缩聚技术,使用少量的模态坐标代替节点坐标以降低动力学方程的求解规模.传统的做法是选取若干低阶的正则模态作为模态函数,可直接由有限元方法得到,且用正则模态得到的模态质量阵和模态刚度阵均为对角阵,减少了仿真计算