抽屉原理典型习题 (2).doc
上传人:qw****27 上传时间:2024-09-12 格式:DOC 页数:4 大小:41KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

抽屉原理典型习题 (2).doc

抽屉原理典型习题(2).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

抽屉原理规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。抽屉原则二:把多于mxn个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。基础训练。把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有______个苹果。98÷10=9……81000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_______只鸽子。1000÷50=20从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。17÷8=2……1从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。25÷(4)=6……(1)拓展训练。六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么(49-3)÷15=3……186,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数(2)有两个数的差是50(1,51)(2,52)(3,53)……(49,99)(50,100)50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是5051÷50=1……1圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.(0+1999)*2000÷2=19990001999000÷2000*3=有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。4*4*4=64200÷64=3……8在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码,在他们之间刚好有19个筹码,为什么?试卷上有4道题,每题有3个可供选择的答案,一群学生参加考试,结果对于其中任何三人都有一道题目的答案互不相同,问:参加考试的学生最多有多少人?一次数学竞赛,有75人参加,满分为20分,参赛者得分都是整数,75人的总分是980分,至少有几分得分相同?某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。31÷30=1……1袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,至少要摸多少次?(4*3*)÷(2*1)=6(55)÷6=9……1一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。(9)÷4=2……19+2=11图书角剩下科技书和文艺书各4本,现在有4个学生来借阅,每人从中借2本,请你证明,必有两名学生借阅的图书完全相同。在一条长100米的小路一旁种上101棵小树,不管怎么种,至少有两棵树苗之间的距离不超过1米。六年级有男生57人,证明:至少有两名男生在同一个星期过生日。57÷52=1……514、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。19÷4=4……3某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相同?50÷3=16……2一.图形分割例1.在边长为1的正方形内任意放13个点.证明:必定存在4点,使得以这4点为顶点的四边形面积不超过.证:如图,将正方形分成4个面积是的矩形,13个点必有4点落在同一个矩形中,其面积不超过.例2.半径为1的圆内任意放7个点,证明:必有2点,它们间的距离不大于1.证:如图,将圆分成6个相等的扇形,7点中必有2点落在同一个扇形中,易知它们的距离不大于1.例3.在3×4的长方形中,任意放6个点.证明:必有2点,它们间的距离不大于.证:如图,将长方形分成5块,6点中必有2点落在同一块中,易知它们的距离不大于.二.数的问题例4.任意给出7个不同整数.证明:必有2个整数,其和或差是10的倍数.证:按除以10的余数将整数分成10类,将这10类分成如下6组:{0}(表示除以10余0的所有整数);{1}、{9};{2}、{8};{3},{7};{4},{6};{5}.7个数中必有2个