综合解析重庆长寿一中数学九年级下册锐角三角函数综合训练试题(含解析).docx
上传人:猫巷****晓容 上传时间:2024-09-12 格式:DOCX 页数:7 大小:206KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

综合解析重庆长寿一中数学九年级下册锐角三角函数综合训练试题(含解析).docx

综合解析重庆长寿一中数学九年级下册锐角三角函数综合训练试题(含解析).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重庆长寿一中数学九年级下册锐角三角函数综合训练考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、在直角△ABC中,,,AC=2,则tanA的值为()A.B.C.D.2、如图,在ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则tan∠DBC的值是()A.B.C.D.3、小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米4、如图所示,某村准备在坡角为的山坡上栽树,要求相邻两棵树之间的水平距离为(m),那么这两棵树在坡面上的距离AB为()A.mcos(m)B.(m)C.msin(m)D.(m)5、如图,过点O、A(1,0)、B(0,)作⊙M,D为⊙M上不同于点O、A的点,则∠ODA的度数为()A.60°B.60°或120°C.30°D.30°或150°6、如图,A、B、C三点在正方形网格线的交点处,若将ΔABC绕着点A逆时针旋转得到,则的值为()A.B.C.D.7、已知锐角α满足tan(α+10°)=1,则锐角用α的度数为()A.20°B.35°C.45°D.50°8、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为()A.atanB.C.D.cos9、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接.若,,则的值是()A.B.C.D.10、如图,小王在高台上的点A处测得塔底点C的俯角为α,塔顶点D的仰角为β,已知塔的水平距离AB=a,则此时塔高CD的长为()A.asinα+asinβB.atanα+atanβC.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、______.2、△ABC中,AB=4,AC=5,△ABC的面积为5,那么∠A的度数是_________.3、如图,已知RtABC中,斜边BC上的高AD=4,cosB,则AC=_____.4、比较大小:tan46°_____cos46°.5、如图,在Rt△ABC中,∠C=90°,AC=2,BC=2.以点A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为______.6、如图,在正方形ABCD中,点E是AD的中点,点O是AC的中点,AC与BE交于点F,AG⊥BE,CH⊥BE,垂足分别为G,H,连接OH,OG,CG.下列结论:①CH﹣AG=HG;②AG=HG;③BH=OG;④AF∶OF∶OC=2∶1∶3;⑤5S△AFG=S△GHC;⑥OG•AC=BH•CD.其中结论正确的序号是________.7、如图,等边的边长为2,点O是的中心,,绕点O旋转,分别交线段于D,E两点,连接,给出下列四个结论:①;②四边形的面积始终等于;③;④周长的最小值为3.其中正确的结论是________(填序号).8、计算:______.9、如图,在网格中,小正方形的边长均为1,点都在格点上,则的正弦值是_______.10、cos30°的相反数是_____.三、解答题(5小题,每小题10分,共计50分)1、计算:2sin60°+tan45°-cos30°tan60°2、如图,平面直角坐标系中,点O为原点,抛物线交x轴于、两点,交y轴于点C.(1)求抛物线解析式;(2)点P在第一象限内的抛物线上,过点P作x轴的垂线,垂足为点H,连AP交y轴于点E,设P点横坐标为t,线段EC长为d,求d与t的函数解析式;(3)在(2)条件下,点M在CE上,点Q在第三象限内抛物线上,连接PC、PQ、PM,PQ与y轴交于W,若,,,求点Q的坐标.3、在⊙O中,,四边形ABCD是平行四边形.(1)求证:BA是⊙O的切线;(2)若AB=6,①求⊙O的半径;
立即下载