Lec08_Convex_student.pdf
上传人:sy****28 上传时间:2024-09-14 格式:PDF 页数:16 大小:308KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

Lec08_Convex_student.pdf

Lec08_Convex_student.pdf

预览

免费试读已结束,剩余 6 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

18-660:NumericalMethodsforEngineeringDesignandOptimizationXinLiDepartmentofECECarnegieMellonUniversityPittsburgh,PA15213Slide1Overview„Lecture7:LinearRegression^Ordinaryleast-squaresregression^Minimaxoptimization^Designofexperiments„Lecture8:ConvexAnalysis^Convexfunction^Convexset^ConvexoptimizationSlide2OrdinaryLeast-SquaresRegression„Solveover-determinedlinearequationbyoptimization⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Msamples⎢A⎥⋅X=⎢B⎥(M>N)⎢⎥⎢⎥⎢⎥⎢⎥⎣⎢⎦⎥⎣⎢⎦⎥NcoefficientsminA⋅X−B2X2Slide3UnconstrainedNonlinearProgramming„NonlinearcostfunctionwithoutconstraintsminA⋅X−B2X2„GeneralnonlinearoptimizationisdifficulttosolveLocaloptimumGlobaloptimumSlide4UnconstrainedQuadraticProgrammingminA⋅X−B2X2„However,ordinaryltleast-squaresregressionisdifftdifferentfromgeneralnonlinearprogramming„OptimizationcostisaquadraticfunctionofXanditisalwaysnon-negativeforanygivenX^Thisisauniquepropertythatenablesustosolveleast-squaresregressionefficientlySlide5PositiveSemi-DefiniteT„IfaquadraticfunctionXAQXisalwaysnon-negative,thequadraticcoefficientmatrixAQispositivesemi-definite^AssumethatAQissymmetricsothatitseigenvaluesarereal^AnyasymmetricAQcanbeconvertedtoasymmetriconeSlide6PositiveSemi-Definite„Simpleexample:⎡01⎤AQ=⎢⎥⎣00⎦Slide7PositiveSemi-Definite„AQispositivesemi-definiteifandonlyifalleigenvaluesofAQarenon-negative(necessaryandsufficientcondition)„EigenvaluedecompositionSlide8PositiveSemi-Definite„Eigenvaluedecomposition⎡λ1⎤⎢⎥A⋅V=V⋅λV=VVΣ=λQiii[12L]⎢2⎥⎣⎢O⎦⎥Slide9PositiveSemi-Definite„IfoneoftheeigenvaluesofAQisnegativeTTAQ=V⋅Σ⋅VwhereVV=ISlide10PositiveSemi-Definite„IfoneoftheeigenvaluesofAQisnegative⎡×⎤⎢⎥T×(VTX)()⋅⎢⎥⋅VTX⎢O⎥⎢⎥⎣−ε⎦Slide11PositiveSemi-DefiniteTT„IfaquadraticfunctionXAQX+BQX+CQisalwaysnon-negative(foranyX),alleigenvaluesofAQarenon-negative^IeI.e.,AQispositivesemi-definite^Why?(Youcanprovethisconclusionbyfollowingthestepsofeigenvaluedecompos