SPSS软件进行主成分分析的应用例子.docx
上传人:王子****青蛙 上传时间:2024-09-13 格式:DOCX 页数:4 大小:494KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

SPSS软件进行主成分分析的应用例子.docx

SPSS软件进行主成分分析的应用例子.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下:表22002年16家上市公司4项指标的数据公司销售净利率(X1)资产净利率(X2)净资产收益率(X3)销售毛利率(X4)歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科技红河光明贵州茅台中铁二局红星发展伊利股份青岛海尔湖北宜化雅戈尔福建南纸731.主成分分析的做法第一,将EXCEL中的原始数据导入到SPSS软件中;注意:导入Spss的数据不能出现空缺的现象,如出现可用0补齐。第二,对四个指标进行标准化处理;【1】“分析”|“描述统计”|“描述”。【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。所做工作:a.原始数据的标准化处理数据标准化主要功能就是消除变量间的量纲关系,从而使数据具有可比性,可以举个简单的例子,一个百分制的变量与一个5分值的变量在一起怎么比较?只有通过数据标准化,都把它们标准到同一个标准时才具有可比性,一般标准化采用的是Z标准化,即均值为0,方差为1,当然也有其他标准化,比如0--1标准化等等,可根据自己的研究目的进行选择,这里介绍怎么进行数据的Z标准化。所的结论:标准化后的所有指标数据。注意:SPSS在调用FactorAnalyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后的变量都是指经过标准化处理后的变量,但SPSS并不直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。第三,并把标准化后的数据保存在数据编辑窗口中然后利用SPSS的factor过程对数据进行因子分析(指标之间的相关性判定略)。【1】“分析”|“降维”|“因子分析”选项卡,将要进行分析的变量选入“变量”列表;【2】设置“描述”,勾选“原始分析结果”和“KMO与Bartlett球形度检验”复选框;【3】设置“抽取”,勾选“碎石图”复选框;【4】设置“旋转”,勾选“最大方差法”复选框;【5】设置“得分”,勾选“保存为变量”和“因子得分系数”复选框;【6】查看分析结果。所做工作:a.查看KMO和Bartlett的检验KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;Bartlett球度度检验的Sig值越小于显著水平0.05,越说明变量之间存在相关关系。所的结论:符合因子分析的条件,可以进行因子分析,并进一步完成主成分分析。注意:1.KMO(Kaiser-Meyer-Olkin)KMO统计量是取值在0和1之间。当所有变量间的简单相关系数平方和远远大于偏相关系数平方和时,KMO值接近1.KMO值越接近于1,意味着变量间的相关性越强,原有变量越适合作因子分析;当所有变量间的简单相关系数平方和接近0时,KMO值接近0.KMO值越接近于0,意味着变量间的相关性越弱,原有变量越不适合作因子分析。Kaiser给出了常用的kmo度量标准:0.9以上表示非常适合;0.8表示适合;0.7表示一般;0.6表示不太适合;0.5以下表示极不适合。2.Bartlett球度检验:巴特利特球度检验的统计量是根据相关系数矩阵的行列式得到的,如果该值较大,且其对应的相伴概率值小于用户心中的显著性水平,那么应该拒绝零假设,认为相关系数矩阵不可能是单位阵,即原始变量之间存在相关性,适合于做主成份分析;相反,如果该统计量比较小,且其相对应的相伴概率大于显著性水平,则不能拒绝零假设,认为相关系数矩阵可能是单位阵,不宜于做因子分析。Bartlett球度检验的原假设为相关系数矩阵为单位矩阵,Sig值为0.001小于显著水平0.05,因此拒绝原假设,说明变量之间存在相关关系,适合做因子分析。所做工作:b.全部解释方差或者解释的总方差(TotalVarianceExplained)初始特征根(InitialEigenvalues)大于1,并且累计百分比达到80%~85%以上。查看相关系数矩阵的特征根及方差贡献率见表3,由于前2个主成分贡献率≥85%、结合表4中变量不出现丢失,所以提取的主成分个数m=2。所的结论:初始特征根:λ1λ2=1.550主成分贡献率:r1=0.47429r2注意:主成分的数目可以根据相关系数矩阵的特征根来判定,如前所说,相关系数矩阵的特征根刚好等于主成分的方差,而方差是变量数据蕴涵信息