如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
分子标记技术及其在农业上的应用摘要:分子标记技术随着分子生物学的发展而取得了较快的进展,而且分子标记技术被广泛的用于农业生产。关键词:分子标记分子生物学农业生产分子标记技术的概念分子标记是以个体间遗传物质内核甘酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接的反映。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。分子标记技术的主要特点1、具有高的多态性。2、共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型。3、能明确辨别等位基因。4、遍布整个基因组。5、除特殊位点的标记外,要求分子标记均匀分布于整个基因组。6、选择中性(即无基因多效性)。7、检测手段简单、快速(如实验程序易自动化)。8、开发成本和使用成本尽量低廉9、在实验室内和实验室间重复性好(便于数据交换)。与形态标记、生物化学标记、细胞学标记相比,具有以下优越性大多数分子标记为共显性,对隐性的性状的选择十分便利。基因组变异极其丰富,分子标记的数量几乎是无限的。在生物发育的不同阶段,不同组织的DNA都可用于标记分析。分子标记揭示来自DNA的变异。表现为中性,不影响目标性状的表达,与不良性状无连锁。检测手段简单、迅速。主要分子标记技术的基本原理RFLP标记基本原理:利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行southern杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。RAPD标记基本原理:它是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。与RFLP相比,RAPD具有以下优点:技术简单,检测速度快。RAPD分析只需少量DNA样品。不依赖于种属特异性和基因组结构,一套引物可用于不同生物基因组分析。成本较低。RAPD也存在一些缺点:RAPD标记是一个显性标记,不能鉴别杂合子和纯合子。存在共迁移问题,凝胶电泳只能分开不同长度DNA片段,而不能分开那些分子量相同但碱基序列组成不同的DNA片段。RAPD技术中影响因素很多,所以实验的稳定性和重复性差。SSR标记基本原理:根据微卫星序列两端互补序列设计引物,通过PCR反应扩增微卫星片段,由于核心序列串联重复数目不同,因而能够用PCR的方法扩增出不同长度的PCR产物,将扩增产物进行凝胶电泳,根据分离片段的大小决定基因型并计算等位基因频率。SSR具有以下一些优点:1、一般检测到的是一个单一的多等位基因位点。2、微卫星呈共显性遗传,故可鉴别杂合子和纯合子。3、所需DNA量少。AFLP标记基本原理先利用限制性内切酶水解基因组DNA产生不同大小的DNA片段,再使双链人工接头的酶切片段相边接,作为扩增反应的模板DNA,然后以人工接头的互补链为引物进行预扩增,最后在接头互补链的基础上添加1—3个选择性核苷酸作引物对模板DNA基因再进行选择性扩增,通过聚丙烯酰胺凝胶电泳分离检测获得的DNA扩增片段,根据扩增片段长度的不同检测出多态性。引物由三部分组成:与人工接头互补的核心碱基序列、限制性内切酶识别序列、引物3’端的选择碱基序列(1—10bp)。接头与接头相邻的酶切片段的几个碱基序列为结合位点。该技术的独特之处在于所用的专用引物可在知道DNA信息的前提下就可对酶切片段进行PCR扩增。为使酶切浓度大小分布均匀,一般采用两个限制性内切酶,一个酶为多切点,另一个酶切点数较少,因而AFLP分析产生的主要是由两个酶共同酶切的片段。AFLP结合了RFLP和RAPD两种技术的优点,具有分辨率高、稳定性好、效率高的优点。但它的技术费用昂贵,对DNA的纯度和内切酶