考点攻克四川绵阳南山双语学校数学九年级下册锐角三角函数专题测评试题(含详细解析).docx
上传人:小沛****文章 上传时间:2024-09-12 格式:DOCX 页数:9 大小:333KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

考点攻克四川绵阳南山双语学校数学九年级下册锐角三角函数专题测评试题(含详细解析).docx

考点攻克四川绵阳南山双语学校数学九年级下册锐角三角函数专题测评试题(含详细解析).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

四川绵阳南山双语学校数学九年级下册锐角三角函数专题测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为.如果在坡度为的山坡上种植树,也要求株距为,那么相邻两树间的坡面距离约为()A.B.C.D.2、已知,在矩形中,于,设,且,,则的长为()A.B.C.D.3、如图,在中,,点D为AB边的中点,连接CD,若,,则的值为()A.B.C.D.4、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到△AB'C',B'C'与BC、AC分别交于点D、点E,设CD+DE=x,△AEC'的面积为y,则y与x的函数图象大致为()A.B.C.D.5、如图,AB是河堤横断面的迎水坡,堤高AC=,水平距离BC=1,则斜坡AB的坡度为()A.B.C.30°D.60°6、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A.:B.:C.:D.:7、如图,在小正方形网格中,的三个顶点均在格点上,则的值为()A.B.C.D.8、如图,河坝横断面迎水坡的坡比为:,坝高m,则的长度为()A.6mB.mC.9mD.m9、如图,在的网格中,A,B均为格点,以点A为圆心,AB的长为半径作弧,图中的点C是该弧与格线的交点,则的值是()A.B.C.D.10、如图,AB是的直径,点C是上半圆的中点,,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为________;tan∠FAE=_______2、如图,等腰直角三角形ABC,∠C=90°,AC=BC=4,M为AB的中点,∠PMQ=45°,∠PMQ的两边分别交BC于点P,交AC于点Q,若BP=3,则AQ=_____.3、如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为__.4、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至D,使BD=AB,连接AD,得∠D=15°,所以tan15°2.类比这种方法,计算tan22.5°的值为_____.5、如图,在A处测得点P在北偏东60°方向上,在B处测得点P在北偏东30°方向上,若AP=6千米,则A,B两点的距离为_____千米.6、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若,.(1)矩形ABCD的面积为________;(2)的值为_________.7、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处.已知,,则的值为_____.8、如图,ABC中,∠BAC>90°,BC=4,将ABC绕点C按顺时针方向旋转90°,点B的对应点落在BA的延长线上,若sin∠AC=0.8,则AC=___.9、当0≤θ≤α时,将二次函数y=﹣x2x(0≤x)的图象G,绕原点逆时针旋转θ得到图形G均是某个函数的图象,则α的最大值为_____.10、如图,在中,,,,以为边向外作等边,则的长为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,点A、B在以CD为直径的⊙O上,且,∠BCD=30°.(1)判断ABC的形状,并说明理由;(2)若BC=cm,求图中阴影部分的面积.2、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)求证:FG是⊙O的切线;(2)若AC=3,CD=2.5,求FG的长.3、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰角为60°,看雕塑底部C的仰角为45°,求雕塑CD的高度.(最后结果精确到0.1米,参考数据:)4、如图,在一次军事演
立即下载