(完整word版)3直线与圆位置关系(2013-2014)教师.doc
上传人:斌斌****公主 上传时间:2024-09-11 格式:DOC 页数:21 大小:3.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)3直线与圆位置关系(2013-2014)教师.doc

(完整word版)3直线与圆位置关系(2013-2014)教师.doc

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

毕业班解决方案模块课程初三数学.圆.直线与圆.教师版PagePAGE\*Arabic\*MERGEFORMAT1ofNUMPAGES\*Arabic\*MERGEFORMAT21上课时间:学生姓名:直线与圆的位置关系2014年中考解决方案毕业班解决方案模块课程初三数学.圆.直线与圆.教师版PagePAGE\*Arabic\*MERGEFORMAT20ofNUMPAGES\*Arabic\*MERGEFORMAT21直线与圆的位置关系中考说明内容基本要求略高要求较高要求直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间关系;会过圆上一点画圆的切线能判定一条直线是否为圆的切线;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题切线长了解切线长的概念会根据切线长知识解决简单问题自检自查必考点设的半径为,圆心到直线的距离为,则直线和圆的位置关系如下表:位置关系图形定义性质及判定相离直线与圆没有公共点.直线与相离相切直线与圆有唯一公共点,直线叫做圆的切线,唯一公共点叫做切点.直线与相切相交直线与圆有两个公共点,直线叫做圆的割线.直线与相交二.切线的性质及判定切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点垂直于切线.过圆心,过切点,则.②过圆心,垂直于切线过切点.过圆心,,则过切点.③过切点,垂直于切线过圆心.,过切点,则过圆心.切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.切线长和切线长定理切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三.三角形的内切圆三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.直角三角形内切圆的半径与三边的关系设..分别为中..的对边,面积为,则内切圆半径为,其中.若,则.重难点1.理解直线与圆的位置关系;2.能够证明切线及利用切线解决相关问题.课前预习切线(tangentline)几何上,切线指的是一条刚好触碰到曲线上某一点的直线。更准确的说,当切线经过曲线上的某点(即切点)时,切线的方向与曲线上该点的方向是相同的,此时,“切线在切点附近的部分”最接近“曲线在切点附近的部分”(无限逼近思想)。tangent在拉丁语中就是totouch的意思。类似的概念也可以推广到平面相切等概念中。曲线切线和法线的定义P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点P并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线.中考必做题模版一直线与圆位置关系的确定已知的面积为,若点到直线的距离为,则直线与的位置关系是()A.相交B.相切C.相离D.无法确定【难度】1星【解析】设圆的半径是,根据圆的面积公式求出半径,再和点到直线的距离π比较即可.【答案】设圆的半径是,则,∴,∵点到直线的距离为,∵,即:,∴直线与的位置关系是相离,故选.【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当时相离;当时相切;当时相交.【巩固】如果一个圆的半径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相离B.相交C.相切D.不能确定【难度】1星【解析】欲求圆与的位置关系,关键是求出点到的距离,再与半径进行比较.若,则直线与圆相交;若,则直线于圆相切;若,则直线与