上海数学高一知识点总结.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:21 大小:2.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

上海数学高一知识点总结.pdf

上海数学高一知识点总结.pdf

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图AB(1)AA(或A中的任一元素都属(2)A子集于B(3)若AB且BC,则ACBA)(4)若AB且BA,则AB或AB(1)A(A为非空子集)AB,且B中至少真子集有一元素不属于A(或BA)(2)若AB且BC,则ACA中的任一元素都属集合(1)ABAB于B,B中的任一元素相等(2)BA都属于A(7)已知集合A有n(n1)个元素,则它有2n个子集,它有2n1个真子集,它有2n1个非空子集,它有2n2非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图(1)AAA{x|xA,且AB(2)A交集(3)ABAxB}ABB(1)AAA{x|xA,或AB(2)AA并集ABAxB}(3)ABB1A(A)2A(A)UU{x|xU,且xA}U补集AU简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.pqqp3、原命题:“若,则”逆命题:“若,则”pqqp否命题:“若,则”逆否命题:“若,则”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若pq,则p是q的充分条件,q是p的必要条件.若pq,则p是q的充要条件(充分必要条件).利用集合间的包含关系:例如:若AB,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;6、逻辑联结词:⑴且(and):命题形式pq;⑵或(or):命题形式pq;⑶非(not):命题形式p.pqpqpqp真真真真假真假假真假假真假真真假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p:xM,p(x);全称命题p的否定p:xM,p(x)。⑵存在量词——“存在一个”、“至少有一个”等,用“”表示;特称命题p:xM,p(x);特称命题p的否定p:xM,p(x);【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0){x|axa}|x|a(a0)x|xa或xa}把axb看成一个整体,化成|x|a,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式000b24ac二次函数yax2bxc(a0)的图象一元二次方程bb24acx1,22abax2bxc0(a0)xx无实根122a的根(其中xx)12ax2bxc0(a0)b{x|xx或xx}{x|x}R122a的解集ax2bxc0(a0){x|xxx}12的解集〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:AB.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且ab,满足ax