如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
编制中考模拟题福清占阳侨中王丁旺1、(满分10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字1,2和3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x上的概率.BA1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)标准答案:(1)。。。。。。。。。。。8分(2)落在直线y=x上的点Q有:(1,1);(2,2)∴P==……………10分试题评析:本题改编自2011年福州市中考数学试卷第18题,本题考查学生利用概率与统计及函数知识解决实际数学问题的能力。第(1)题重在让学生用列表法或树状图写出点Q坐标的所有可能,难度不大,学生较易解决,重在培养学生的分析解决问题能力。第(2)题结合正比例函数图像知识,让学生根据第(1)题的结论来判断Q点坐标是否在直线y=x上。本题考查学生的数学双基能力。2、(满分13分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.标准答案:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,BC=2,tan∠CFB=,即tan60=,解得BF=2,即3﹣t=2,t=1,∴当边FG恰好经过点C时,t=1;。。。。。。。。。。。。。。。。。。3分(2)当0≤t<1时,S=2t+4;当1≤t<3时,S=﹣t2+3t+;当3≤t<4时,S=﹣4t+20;当4≤t<6时,S=t2﹣12t+36;。。。。。。。。。。。。。。。。。。。。7分(3)存在.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8分在Rt△ABC中,tan∠CAB==,∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,∴AE=HE=3﹣t或t﹣3,1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM=AH=,在Rt△AME中,cos∠MAE═,即cos30°=,∴AE=,即3﹣t=或t﹣3=,∴t=3﹣或t=3+,。。。。。。。。。。。。。。。。。。。。。。。。。10分2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,又∵AE+EO=3,∴AE+2AE=3,AE=1,即3﹣t=1或t﹣3=1,∴t=2或t=4;。。。。。。。。。。。。。。。。。。。12分3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=3,即3﹣t=3或t﹣3=3,t=6(舍去)或t=0;综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3﹣或t=3+或t=2或t=2或t=0.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13分试题分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3﹣t,在Rt△CBF中,解直角三角形可求t的值;(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的值.本题考查学生相似三角形的判定与性质应用;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形。关键是根据特殊三角形的性质,分类讨论.本题第(1)题学生较易解决,第(2)(3)题考查学生综合应用数学知识解决实际问题的能力