((完整版))矩形习题精选(含答案)-推荐文档.pdf
上传人:王子****青蛙 上传时间:2024-09-10 格式:PDF 页数:8 大小:131KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

((完整版))矩形习题精选(含答案)-推荐文档.pdf

((完整版))矩形习题精选(含答案)-推荐文档.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

矩形测试题1、如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,则重叠部分△AFC的面积为_________.2、矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,对角线长是________,两边长分别等于3、矩形周长为36cm,一边中点与对边两顶点的连线所夹的角是直角,则矩形各边长是______.4、已知矩形ABCD中,O是AC、BD的交点,OC=BC,则∠CAB=_______.5、如图,矩形ABCD中,E是BC中点,∠BAE=30°,AE=4,则AC=______.6、如图,矩形ABCD中,AB=2BC,在CD上取上一点M,使AM=AB,则∠MBC=_______.7、如果矩形ABCD的对角线AC、BD相交于O点,且∠BOC=120°,AB=3cm,那么矩形ABCD的面积为________.8、矩形具有一般平行四边形不具有的性质是().A.对角相等B.对角线相等C.对边相等D.对角线互相平分9、如果E是矩形ABCD中AB的中点,那么△AED的面积:矩形ABCD的面积值为().A.B.C.D.10、下面命题正确的个数是().(1)矩形是轴对称图形(2)矩形的对角线大于夹在两对边间的任意线段(3)两条对角线相等的四边形是矩形(4)有两个角相等的平行四边形是矩形(5)有两条对角线相等且互相平行的四边形是矩形A.5个B.4个C.3个D.2个11、已知:如图,矩形ABCD中,EF⊥CE,EF=CE,DE=2,矩形的周长为16,求AE的长.12、如图,矩形ABCD中,DF平分∠ADC交AC于E,交BC于F,∠BDF=15°,求∠DOC、∠COF的度数.13、如图,在矩形ABCD中,点E、F分别在边AB、DC上,BF∥DE,若BBDD=12cm,AB=7cm,且AE:EB=5:2,求阴影部分EBFD的面积.14、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点,其中阴影部分用甲布料,其余部分用乙布料,(裁剪两种布料时,均不计余料),若生产这批风筝需要甲布料30匹,那么需要乙布料多少匹呢?15、已知:如图,从矩形ABCD的顶点C作对角线BD的垂线与∠BAD的平分线相交于点E.求证:AC=CE.16、如图,△ABC中,∠A=2∠B,CD是△ABC的高,E是AB的中点,求证:DE=AC.17、如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连结AF,求∠BAF的大小.18、如图,矩形ABCD中,AF=CE,求证:AECF是平行四边形..19、如图,在△ABC中,AB=AC,PE⊥AB,PF⊥AC,CD⊥AB,垂足分别为E、D、F,求证:PE-PF=CD.20、已知:如图,矩形ABCD中,AE=DE,BE的延长线与CD的延长线相交于点F,求证:S矩形ABCD=S△BCF.21、若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,请你求出这个平行四边形的一个最小内角的值等于多少?22、如图,已知在四边形ABCD中,AC⊥DB,交于O、E、F、G、H分别是四边的中点,求证四边形EFGH是矩形.23、矩形一条长边的中点与其对边的两端点的连线互相垂直,已知矩形的周长为24cm,则矩形的面积是24、矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是().A.57.5°B.32.5°C.57.5°、33.5°D.57.5°、32.5°25、如图,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCED是矩形.(用两种证法)参考答案1、7.52、10,5,53、6cm,12cm,6cm,12cm4、30°5、26、157、9cm28、B9、C10、D11、解∵EF⊥CE∴∠FEC=90°∴∠AEF=∠DCE,∵EF=CE∠A=∠D∴△AEF≌△CDE∴AE=CD∴AD=AE+DE=CD+2∴4CD+4=16∴CD=3∴AE=312、提示:∠ODC=∠ODE+∠EDC=15°+45°=60°,∴△ODC是等边三角形,∴∠DOC=60°,∵OC=CD,CD=CF,∴OC=CF,又∵∠OCF=90°-60°=30°,∴∠COF==75°.13、∵AE:EB=5:2,AB=7cm,∴BE=2∵BF∥DEBE∥CF,∴四边形EBFD是平行四边形∴