地理系统的战略决策模型(ppt83).pptx
上传人:王子****青蛙 上传时间:2024-09-11 格式:PPTX 页数:84 大小:1.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

地理系统的战略决策模型(ppt83).pptx

地理系统的战略决策模型(ppt83).pptx

预览

免费试读已结束,剩余 74 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

地理系统的战略决策模型本章主要内容美国运筹学家T.L.Saaty于20世纪70年代提出的AHP决策分析法(analytichierarchyprocess,简称AHP方法),是一种定性与定量相结合的决策分析方法。它常常被运用于多目标、多准则、多要素、多层次的非结构化的复杂决策问题,特别是战略决策问题的研究,具有十分广泛的实用性。AHP决策分析法,是一种将决策者对复杂问题的决策思维过程模型化、数量化的过程。通过这种方法,可以将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案重要性程度的权重,从而为决策方案的选择提供依据。AHP决策分析法,是解决复杂的非结构化的地理决策问题的重要方法,是计量地理学的主要方法之一。第1节AHP决策分析的基本原理与计算方法一、基本原理AHP决策分析方法的基本原理,可以用以下的简单事例分析来说明。假设有n个物体A1,A2,…,An,它们的质量分别记为W1,W2,…,Wn。现将每个物体的重量两两进行比较如下:若以矩阵来表示各物体的这种相互质量关系A=A称为判断矩阵。若取质量向量W=[W1,W2,…,Wn]T,则有AW=n•WW是判断矩阵A的特征向量,n是A的一个特征值。根据线性代数知识可以证明,n是矩阵A的唯一非零的、也是最大的特征值。上述事实告诉我们,如果有一组物体,需要知道它们的质量,而又没有衡器,那么就可以通过两两比较它们的相互质量,得出每一对物体质量比的判断,从而构成判断矩阵;然后通过求解判断矩阵的最大特征值λmax和它所对应的特征向量,就可以得出这一组物体的相对质量。这一思路提示我们——在复杂的决策问题研究中,对于一些无法度量的因素,只要引入合理的度量标度,通过构造判断矩阵,就可以用这种方法来度量各因素之间的相对重要性,从而为有关决策提供依据。这一思想,实际上就是AHP决策分析方法的基本思想,AHP决策分析方法的基本原理也由此而来。二、AHP决策分析方法的基本过程在这一个步骤中,要求将问题所含的要素进行分组,把每一组作为一个层次,并将它们按照:最高层(目标层)—若干中间层(准则层)—最低层(措施层)的次序排列起来。这种层次结构模型常用结构图来表示(图10.1),图中要标明上下层元素之间的关系。如果某一个元素与下一层的所有元素均有联系,则称这个元素与下一层次存在有完全层次的关系。如果某一个元素只与下一层的部分元素有联系,则称这个元素与下一层次存在有不完全层次的关系。层次之间可以建立子层次,子层次从属于主层次中的某一个元素,它的元素与下一层的元素有联系,但不形成独立层次。这一个步骤是AHP决策分析中一个关键的步骤。②其中,bij表示对于Ak而言,元素Bi对Bj的相对重要性程度的判断值。一般取1,3,5,7,9等5个等级标度,其意义为:1表示Bi与Bj同等重要;3表示Bi较Bj重要一点;5表示Bi较Bj重要得多;7表示Bi较Bj更重要;9表示Bi较Bj极端重要。而2,4,6,8表示相邻判断的中值,当5个等级不够用时,可以使用这几个数。③显然,对于任何判断矩阵都应满足④一般而言,判断矩阵的数值是根据数据资料、专家意见和分析者的认识,加以平衡后给出的。⑤如果判断矩阵存在关系bij=(i,j,k=1,2,3,…,n)则称它具有完全一致性。为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一致性检验。向量。即对于判断矩阵B,计算满足③检验判断矩阵的一致性:通过前面的分析,我们知道,如果判断矩阵B具有完全一致性时,λmax=n。但是,在一般情况下是不可能的。为了检验判断矩阵的一致性,需要计算它的一致性指标时,就认为判断矩阵具有令人满意的一致性;否则,当CR0.1时,就需要调整判断矩阵,直到满意为止。表10.1平均随机一致性指标(五)层次总排序表10.2层次总排序表CI=式中:RI为层次总排序的随机一致性指标;RIj为与aj对应的B层次中判断矩阵的随机一致性指标;CR为层次总排序的随机一致性比例。当CR<0.10时,则认为层次总排序的计算结果具有令人满意的一致性;否则,就需要对本层次的各判断矩阵进行调整,直至层次总排序的一致性检验达到要求为止。三、计算方法常常用如下两种近似算法求解判断矩阵的最大特征根及其所对应的特征向量。(一)方根法将向量=归一化则即为所求的特征向量。计算最大特征根表示向量AW的第i个分量。(二)和积法将向量=归一化则即为所求的特征向量。计算最大特征根表示向量AW的第i个分量。四、对AHP方法的简单评价缺点存在着较大的随意性。譬如,对于同样一个决策问题,如果在互不干扰、互不影响的条件下,让不同的人同样都采用AHP决策分析方法进行研究,则他们所建立的层次结