(挑战 )中考数学 压轴题第六版精选 2.1 由比例线段产生的函数关系问题.doc
上传人:13****88 上传时间:2024-09-14 格式:DOC 页数:10 大小:461KB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

(挑战 )中考数学 压轴题第六版精选 2.1 由比例线段产生的函数关系问题.doc

(挑战)中考数学压轴题第六版精选2.1由比例线段产生的函数关系问题.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.1由比例线段产生的函数关系成绩例12012年上海市徐汇区中考模拟第25题在Rt△ABC中,∠C=90°,AC=6,,⊙B的半径长为1,⊙B交边CB于点P,点O是边AB上的动点.(1)如图1,将⊙B绕点P旋转180°得到⊙M,请判断⊙M与直线AB的地位关系;(2)如图2,在(1)的条件下,当△OMP是等腰三角形时,求OA的长;(3)如图3,点N是边BC上的动点,如果以NB为半径的⊙N和以OA为半径的⊙O外切,设NB=y,OA=x,求y关于x的函数关系式及定义域.图1图2图3动感体验请打开几何画板文件名“12徐汇25”,拖动点O在AB上运动,观察△OMP的三个顶点与对边的垂直平分线的地位关系,可以体验到,点O和点P可以落在对边的垂直平分线上,点M不能.请打开超级画板文件名“12徐汇25”,分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y关于x的函数关系.思绪点拨1.∠B的三角比反复用到,留意对应关系,防止错乱.2.分三种情况探求等腰△OMP,各种情况都有各自特殊的地位关系,用几何说理的方法比较简单.3.探求y关于x的函数关系式,作△OBN的边OB上的高,把△OBN分割为两个具有公共直角边的直角三角形.满分解答在Rt△ABC中,AC=6,,所以AB=10,BC=8.过点M作MD⊥AB,垂足为D.在Rt△BMD中,BM=2,,所以.因而MD>MP,⊙M与直线AB相离.图4(2)①如图4,MO≥MD>MP,因而不存在MO=MP的情况.②如图5,当PM=PO时,又由于PB=PO,因而△BOM是直角三角形.在Rt△BOM中,BM=2,,所以.此时.③如图6,当OM=OP时,设底边MP对应的高为OE.在Rt△BOE中,BE=,,所以.此时.图5图6(3)如图7,过点N作NF⊥AB,垂足为F.联结ON.当两圆外切时,半径和等于圆心距,所以ON=x+y.在Rt△BNF中,BN=y,,,所以,.在Rt△ONF中,,由勾股定理得ON2=OF2+NF2.因而得到.整理,得.定义域为0<x<5.图7图8考点舒展第(2)题也能够这样考虑:如图8,在Rt△BMF中,BM=2,,.在Rt△OMF中,OF=,所以.在Rt△BPQ中,BP=1,,.在Rt△OPQ中,OF=,所以.①当MO=MP=1时,方程没有实数根.②当PO=PM=1时,解方程,可得③当OM=OP时,解方程,可得.例22012年连云港市中考第26题如图1,甲、乙两人分别从A、B两点同时出发,点O为坐标原点.甲沿AO方向、乙沿BO方向均以每小时4千米的速度行走,t小时后,甲到达M点,乙到达N点.(1)请阐明甲、乙两人到达点O前,MN与AB不可能平行;(2)当t为甚么值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长.设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.动感体验请打开几何画板文件名“12连云港26”,拖动点N在射线BO上运动,可以体验到,当M、N都在O右侧时,MN与AB不平行.当点A落在上时,∠MNO=∠BAO,△OMN∽△OBA.请打开超级画板文件名“12连云港26”,拖动点N在射线BO上运动,可以体验到,当M、N都在O右侧时,MN与AB不平行.当点A落在上时,∠MNO=∠BAO,△OMN∽△OBA.s与t之间的函数关系式呈抛物线图象,当t=1时,甲、乙两人的最小距离为12千米.答案(1)当M、N都在O右侧时,,,所以.因而MN与AB不平行.(2)①如图2,当M、N都在O右侧时,∠OMN>∠B,不可能△OMN∽△OBA.②如图3,当M在O左侧、N在O右侧时,∠MON>∠BOA,不可能△OMN∽△OBA.③如图4,当M、N都在O左侧时,如果△OMN∽△OBA,那么.所以.解得t=2.图2图3图4(3)①如图2,,,..②如图3,,,..③如图4,,,..综合①、②、③,s.所以当t=1时,甲、乙两人的最小距离为12千米.例32011年上海市中考第25题在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1图2备用图动感体验请
立即下载