如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
先进陶瓷及其应用集锦在千姿百态的物质界,大自然所恩赐的天然材料(如矿物、岩石、木材、丝棉等)虽数量大,品种多,但就其品种远不能满足社会发展的需求。现代科技和人类生存所应用的材料,绝大多数品种是以自然资源和传统材料为基础,经加工改造而成的人工合成材料。正是这些人工材料,支撑着整个社会的科技与文明。故而,对自然资源的开发、传统材料的改造和新型材料的研制,已成为当今人们获取新材料的系统工程。材料工程技术将为科技进步不断开发出形形色色的具有特殊功能的新型材料和先进材料。功能奇异的先进陶瓷便是新材料技术发展的典范。陶瓷是用无机化合物粉料经高温烧结而成的、以多晶聚集体为基本结构的固体物质。传统陶瓷是以天然硅酸盐矿物(瓷石、粘土、长石、石英砂等)为原料,经粉碎、磨细、调和、塑形、干燥、锻烧等传统工艺制作而成。实际上瓷是在陶的基础上发展而成的比陶白净、细腻、质地致密且性能更为优良的硅酸盐材料。先进陶瓷与传统陶瓷区别在于:先进陶瓷是以高纯、超细的人工合成的无机化合物(可含或不含硅化物)为原料,采用精密控制的先进工艺烧结而成的、比传统陶瓷结构更加精细、性能更加优异的新一代陶瓷。先进陶瓷又称为精细陶瓷或高性能陶瓷。先进陶瓷按使用性能可分为先进结构陶瓷(其使用性能主要指强度、刚度、硬度、弹性、韧性等力学性能)和先进功能陶瓷(其使用性能主要指光、电、磁、热、声等功能性能)两大类;按其化学成分又可分为:氧化物陶瓷、氮化物陶瓷、氟化物陶瓷、碳化物陶瓷、硅化物陶瓷、硼化物陶瓷、铝酸盐陶瓷等。先进结构陶瓷是指以其优异的力学性能而用于各种机械结构部件的新型陶瓷。应用领域如陶瓷质密封套管、轴承、缸套、活塞及切削刀具等;先进功能陶瓷则是指利用材料的电、磁、光、声、热等直接的性能或其耦合效应来实现某种使用性能的新型陶瓷。如电容器陶瓷以其极高的抗电击穿性能用来制作高容抗陶瓷电容器;压电陶瓷以其能利用机械撞击或机械振荡产生电效应来制作压电点火装置的发火元件或传感器元件;热敏陶瓷可感知微小的温度变化,用于测温、控温;气敏陶瓷制成的气敏元件能对易燃、易爆、有害气体进行监测、控制和实现自动报警;而用光敏陶瓷制成的电阻器可用作光电控制,自动曝光和自动记数;磁性陶瓷是重要的信息记录材料,在计算机中完成记忆功能。此外,先进陶瓷材料还有高绝缘陶瓷、半导体陶瓷、超导陶瓷、介电陶瓷、耐热透明陶瓷、发光陶瓷、滤光陶瓷、吸波陶瓷、激光用陶瓷、核燃料陶瓷、推进剂陶瓷、太阳能光转换陶瓷、贮能陶瓷、陶瓷固体电池、阻尼陶瓷、生物技术陶瓷、催化陶瓷、特种功能薄膜陶瓷、纤维补强陶瓷、烧蚀陶瓷等。这些特种陶瓷在自动控制装置、仪器仪表、精密机械、电子、通讯、能源、交通、冶金、化工、航空航天技术等部门均发挥着重要作用。随着材料科学的发展和制造工艺的改进,陶瓷的内部组织构造渐趋精细化、致密化而使材料性能大幅度提高,以致出现新的特殊功能。在其发展过程中,大批的多功能、高性能先进陶瓷应运而生。1方兴未艾的纳米陶瓷陶瓷的性能取决于其内部组织结构。在显微镜下可观察到陶瓷内部组织主要有三种结构——晶体相、玻璃相和气孔。晶体态组织(即晶体相)是由原子有序排列而形成的组织结构紧凑致密的晶态结构,这是陶瓷的基本结构,也是陶瓷具有优良性能的良种结构;玻璃态组织(即玻璃相)是原子排列紊乱的非晶态结构,此种结构及其微气孔是造成陶瓷质脆及影响1别的性能的劣质结构。因玻璃态组织比晶体态组织结构疏松,且受热易软化从而降低了陶瓷的强度、硬度和抗热冲击性能,同时也影响到其它的功能性能。可见,减少陶瓷内部玻璃态组织、微气孔及微裂纹的含量,增大陶瓷内部组织结构的精细度和致密性是改善陶瓷使用性能(包含力学性能和功能性能)以获得先进陶瓷的关键。改善陶瓷结构与性能的主要途径,一是精选优质人工合成原料及优化配料比;二是提高原料的纯度和精细度;三是改进陶瓷的烧结工艺,精密控制结晶和晶粒聚结条件;四是引用高新技术对产品进行深加工(如高压电场极化、超声波照射或表面抛光等),以进一步消除其结构应力或强化使用性能。通过这些途径若能有效地降低陶瓷内部的玻璃相、微气孔及微裂纹的含量,甚至制造出几乎不含玻璃相和微气孔及微裂纹的、晶粒更微细的精密陶瓷,其综合性能均会大幅度提高,以至可能从根本上消除其脆性这一致命弱点,甚至出现更多的有实用价值的独特性能。先进陶瓷正是沿这种思路研制发展而成的。同时也为纳米陶瓷的研制从理论上找到了开发途径。目前,陶瓷技术正朝着由先进陶瓷向更微细化的“纳米陶瓷”方向发展。所谓纳米陶瓷,是指其显微结构中的物相均为纳米尺度(即100nm至0.1nm)的陶瓷材料。它包括晶相粒尺寸、第二相分布、气孔尺寸等均是在纳米量级的水平上。其结构晶