(完整word版)必修二--立体几何复习+经典例题.doc
上传人:努力****振宇 上传时间:2024-09-10 格式:DOC 页数:8 大小:399KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)必修二--立体几何复习+经典例题.doc

(完整word版)必修二--立体几何复习+经典例题.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE\*MERGEFORMAT8一、判定两线平行的方法平行于同一直线的两条直线互相平行垂直于同一平面的两条直线互相平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行在同一平面内的两条直线,可依据平面几何的定理证明判定线面平行的方法据定义:如果一条直线和一个平面没有公共点如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行两面平行,则其中一个平面内的直线必平行于另一个平面平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直如果一条直线和一个平面内的两条相交线垂直,则线面垂直如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法定义:成角直线和平面垂直,则该线与平面内任一直线垂直在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直七、判定面面垂直的方法定义:两面成直二面角,则两面垂直一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面八、面面垂直的性质二面角的平面角为在一个平面内垂直于交线的直线必垂直于另一个平面相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围1、异面直线所成的角的取值范围是:2、直线与平面所成的角的取值范围是:3、斜线与平面所成的角的取值范围是:4、二面角的大小用它的平面角来度量;取值范围是:十、三角形的心内心:内切圆的圆心,角平分线的交点外心:外接圆的圆心,垂直平分线的交点重心:中线的交点垂心:高的交点【例题分析】例2在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面PAD.【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD中点E,连接AE,NE.∵底面ABCD是平行四边形,M,N分别是AB,PC的中点,∴MA∥CD,∵E是PD的中点,∴NE∥CD,∴MA∥NE,且MA=NE,∴AENM是平行四边形,∴MN∥AE.又AE平面PAD,MN平面PAD,∴MN∥平面PAD.方法二取CD中点F,连接MF,NF.∵MF∥AD,NF∥PD,∴平面MNF∥平面PAD,∴MN∥平面PAD.【评述】关于直线和平面平行的问题,可归纳如下方法:(1)证明线线平行:a∥c,b∥c,a∥α,aβα∥βa⊥α,b⊥αα∩β=b∩α=a,∩β=ba∥ba∥ba∥ba∥b(2)证明线面平行:a∩α=a∥bα∥βbα,aαaβa∥αa∥αa∥α(3)证明面面平行:α∩β=a∥β,b∥βa⊥α,a⊥βα∥,β∥a,bα,a∩b=Aα∥βα∥βα∥βα∥β例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥AB.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平