如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第PAGE-10-页共NUMPAGES10页正弦波振荡器是不需要输入信号控制就能自动地将直流能量转换为特定频率和振幅的正弦交变能量的电路。正弦波振荡器广泛用于各种电子设备中。此类应用中,对振荡器提出的要求是振荡频率和振荡振幅的准确性和稳定性。正弦波振荡器的另一类用途是作为高频加热设备和医用电疗仪器中的正弦交变能源。这类应用中,对振荡器提出的要求主要是高效率地产生足够大的正弦交变功率,而对振荡频率的准确性和稳定性的要求一般不作苛求。正弦波振荡器可分为两大类,一类是利用正反馈原理构成的反馈振荡器,它是目前应用最广的一类振荡器。另一类是负阻振荡器,它是将负阻器件直接连接到谐振回路中,领用负阻器件的负电阻效应去抵消回路中的损耗,从而产生出等幅的自由振荡。你从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1Hz~1MHz的低频信号。1、RC移相振荡器电路型式如图12-1所示,选择R>>Ri。图12-1RC移相振荡器原理图振荡频率起振条件放大器A的电压放大倍数||>29电路特点简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。频率范围几赫~数十千赫。2、RC串并联网络(文氏桥)振荡器电路型式如图12-2所示。振荡频率起振条件||>3电路特点可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。图12-2RC串并联网络振荡器原理图3、双T选频网络振荡器电路型式如图12-3所示。图12-3双T选频网络振荡器原理图振荡频率起振条件||>1电路特点选频特性好,调频困难,适于产生单一频率的振荡。注:本实验采用两级共射极分立元件放大器组成RC正弦波振荡器。三、实验设备与器件1、+12V直流电源2、函数信号发生器3、双踪示波器4、频率计5、直流电压表6、3DG12×2或9013×2电阻、电容、电位器等四、实验内容1、RC串并联选频网络振荡器(1)按图12-4组接线路图12-4RC串并联选频网络振荡器(2)断开RC串并联网络,测量放大器静态工作点及电压放大倍数。(3)接通RC串并联网络,并使电路起振,用示波器观测输出电压uO波形,调节Rf使获得满意的正弦信号,记录波形及其参数。(4)测量振荡频率,并与计算值进行比较。(5)改变R或C值,观察振荡频率变化情况。(6)RC串并联网络幅频特性的观察将RC串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC串并联网络,保持输入信号的幅度不变(约3V),频率由低到高变化,RC串并联网络输出幅值将随之变化,当信号源达某一频率时,RC串并联网络的输出将达最大值(约1V左右)。且输入、输出同相位,此时信号源频率为2、双T选频网络振荡器(1)按图12-5组接线路(2)断开双T网络,调试T1管静态工作点,使UC1为6~7V。(3)接入双T网络,用示波器观察输出波形。若不起振,调节RW1,使电路起振。(4)测量电路振荡频率,并与计算值比较。图12-5双T网络RC正弦波振荡器3、RC移相式振荡器的组装与调试(1)按图12-6组接线路(2)断开RC移相电路,调整放大器的静态工作点,测量放大器电压放大倍数。(3)接通RC移相电路,调节RB2使电路起振,并使输出波形幅度最大,用示波器观测输出电压uO波形,同时用频率计和示波器测量振荡频率,并与理论值比较。*参数自选,时间不够可不作。§3.2LC正弦波振荡器主要介绍三点式振荡器和差分对管振荡器3.2.1三点式振荡电路一、电路的组成法则与发射极相连的为两个同性电抗,另一个(接在集电极与基极间)为异性电抗。证明:如图c所示(理想)由于回路谐振:X1+X2+X3≈0由于Vo与Vi反相(共射)Vf是Vo在X3、X2支路中X2上的电压即为了满足相位平衡条件,Vf就必须与Vo反相,因而X2必须与X1为同性质电抗,再由X1+X2+X3≈0可知X3应为异性电抗。二、三点式振荡电路电容三点式振荡电路(反馈信号是电容上的电压)电感三点式振荡电路(反馈信号是电感上的电压)电容三点式振荡电路两图的区别是交流接地电极方式不同,所以反馈方式也不同;(a)反馈电压加到三极管的基极,(b)反馈电压加到三极管的发射极就交流通路而言,不论三极管哪一个极交流接地,它们都是由可变增益器件(三极管)和移相网络(并联谐振回来)组成,且满足三点式振荡电路的组成法则。电路中,作为可变增益器件的三极管必须由偏置电路设置合适的静态工作点,以保证起振时工作在放大区,提供足够的增益,满足起振条件;起振后,振荡振幅增长,直到三极管