(完整word版)初二数学几何难题训练题及答案.doc
上传人:元容****少女 上传时间:2024-09-10 格式:DOC 页数:4 大小:292KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(完整word版)初二数学几何难题训练题及答案.doc

(完整word版)初二数学几何难题训练题及答案.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE\*MERGEFORMAT4初二几何难题训练题1,如图矩形ABCD对角线AC、BD交于O,EF分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。证明:(1)在矩形ABCD中,AC,BD为对角线,∴AO=OD=OB=OC∴∠DAO=∠ADO=∠CBO=∠BCO∵E,F为OA,OB中点∴AE=BF=1/2AO=1/2OB∵AD=BC,∠DAO=∠CBO,AE=BF∴△ADE≌△BCF(2)过F作MN⊥DC于M,交AB于N∵AD=4cm,AB=8cm∴BD=4根号5∵BF:BD=NF:MN=1:4∴NF=1,MF=3∵EF为△AOB中位线∴EF=1/2AB=4cm∵四边形DCFE为等腰梯形∴MC=2cm∴FC=根号13cm。2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.证明:过点D作DM⊥AB,∵DC∥AB,∠CBA=90°,∴四边形BCDM为矩形.∴DC=MB.∵AB=2DC,∴AM=MB=DC.∵DM⊥AB,∴AD=BD.∴∠DAB=∠DBA.∵EF∥AB,AE与BF交于点D,即AE与FB不平行,∴四边形ABFE是等腰梯形.解:∵DC∥AB,∴△DCF∽△BAF.∴CDAB=CFAF=12.∵CF=4cm,∴AF=8cm.∵AC⊥BD,∠ABC=90°,在△ABF与△BCF中,∵∠ABC=∠BFC=90°,∴∠FAB+∠ABF=90°,∵∠FBC+∠ABF=90°,∴∠FAB=∠FBC,∴△ABF∽△BCF,即BFCF=AFBF,∴BF2=CF•AF.∴BF=42cm.∴AE=BF=42cm.3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形∴BC=CD=DE=AB=6,BG∥DE∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED∴△ABP∽△ADE∴BPDE=ABAD∴BP=ABAD•DE=618×6=2;(2)∵菱形ABGH、BCFG、CDEF是全等的菱形∴AB=BC=EF=FG∴AB+BC=EF+FG∴AC=EG∵AD∥HE∴∠1=∠2∵BG∥CF∴∠3=∠4∴△EGP≌△ACQ.4、已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G1如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论2如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?3如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么?4请你就1,2,3的结论,选择一种情况给予证明解:(1)∵FH∥EG∥AC,∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC.∴BF/FH=BE/EG=BA/AC∴BF+BE/FH+EG=BA/AC又∵BF=EA,∴EA+BE/FH+EG=AB/AC∴AB/FH+EG=AB/AC.∴AC=FH+EG.(2)线段EG、FH、AC的长度的关系为:EG+FH=AC.证明(2):过点E作EP∥BC交AC于P,∵EG∥AC,∴HYPERLINK"http://wenwen.soso.com/z/Search.e?sp=S%E5%9B%9B%E8%BE%B9%E5%BD%A2&ch=w.search.yjjlink&cid=w.search.yjjlink"\t"_blank"四边形EPCG为HYPERLINK"http://wenwen.soso.com/z/Search.e?sp=S%E5%B9%B3%E8%A1%8C%E5%9B%9B%E8%BE%B9%E5%BD%A2&ch=w.search.yjjlink&cid=w.search.yjjlink"\t"_blank"平行四边形.∴EG=PC.∵HF∥EG∥AC,∴∠F=∠A,∠FBH=∠ABC=∠AEP.又∵AE=BF,∴△BHF≌△EPA.∴HF=AP.∴AC=PC+AP=EG+HF.即EG+FH=AC.5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹