如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
学前教育数学教学设计方案2022学前教育数学教学设计方案1活动目标:1、初步感知圆柱体的外形特征。2、会辨认圆柱体的物体,能从周围环境中找出相似的物体。3、发展观察能力和辨别能力。4、让幼儿懂得简单的数学道理。5、让孩子们能正确判断数量。活动准备:1、教具准备:圆柱体的积木若干;2、操作册:第6册P53.活动过程:1、预备活动。(1)师幼互相问候。(2)走线,线上游戏:摸摸快回来。圆圈中摆放若干大砖块、大积木、易拉罐。幼儿听音乐在圆圈周围自由走动。2、集体活动。(1)复习长方体、正方体、球体等,感知圆柱体。请一名幼儿把双手伸到相中选中一个几何体,摸一摸、想一想,充分感知后大声地向其他幼儿描述魔道的东西是什么样的。(2)认识圆柱体。游戏继续进行,当幼儿摸到圆柱体,经过描述后,其他幼儿不能准确猜出是什么几何体时,教师举起圆柱体,告诉幼儿:这种形体叫圆柱体。请幼儿在教室里找出和圆柱体的积木相同形体的物品,通过自有触摸和摆弄,感知圆柱体的外形特征。(3)请幼儿试着滚动圆柱体和球体,观察它们在滚动的时候有什么特点,有什么不一样。并尝试从写披上向下滚,看看谁滚得快、滚得远。3、完成操作册。(1)教师示范、讲解操作册习题。(2)分发幼儿操作册,教师巡回指导幼儿进行。(3)教师批改幼儿操作册,错误的地方督促幼儿订正。4、交流小结,收拾学具。指导幼儿参观学习同伴的活动成果,收拾操作材料。活动反思:本节课的内容是学生已经掌握了长方体、正方体、圆的知识基础上进行教学的,这也为后面学习圆锥的知识奠定了基础。成功之处:1.注重知识的拓展。在教学圆柱的认识时,通过把一张长方形的硬纸贴在木棒上,快速转动木棒,让学生观察转动起来后的形状是一个圆柱形。对于这个形状学生很容易想到,但是对于这个内容背后的知识更加需要学生掌握。在教学中我没有把知识点止于这一步,而是利用教具让学生清楚的观察到:当以长方形的长为轴旋转,长就是圆柱的高,宽就是圆柱的底面半径;当以长方形的宽为轴旋转,宽就是圆柱的底面半径,即以长方形的哪条边为轴旋转,哪条边就是圆柱的.高,而另一条边就是圆柱的底面半径。通过这样的教学,学生在解决相应的问题时就不会感到无从下手,同时也培养了学生的空间想象能力。2.加强学生的动手操作,注重圆柱知识的推导过程。在教学圆柱的侧面积时,通过学生的动手操作,让学生对圆柱的侧面展开图是长方形有了一个清晰的认识,特别是圆柱的侧面积公式的推导过程,学生发现了长方形的长=圆柱的底面周长,宽=圆柱的高。因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。3.注重数学思想方法的渗透。在教学圆柱的体积时通过教具的现场演示,学生清晰地看到了圆柱转化成长方体的过程,学生很容易发现:长方体的体积等于圆柱的体积,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,由此推导出圆柱的体积公式也是底面积乘高,并进一步推导V=∏r2h。在这一过程中,学生发现虽然形状发生了改变,但是体积不变,这也是数学教学中需要学生掌握的数学思想方法,除此之外,转化思想也是必不可少,这两种数学思想方法在解决问题过程中有着至关重要的作用,这对于以后的学习,对于学生的终身学习有着不可估量的作用。徐云鸿主任说:几何直观于学生而言,是一种有效的学习方式;于教师而言,是一种有效的教学手段。它是数形结合思想的体现,在小学数学教学中是不可缺少的、重要的数学思想方法。虽然徐老师说的是几何直观,但是对于其它在小学阶段中必须渗透的变中不变思想、转化思想也是是不可缺少的、重要的数学思想方法。2022学前教育数学教学设计方案2一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的'欲望。二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此