Lec07_RSM_student.pdf
上传人:sy****28 上传时间:2024-09-14 格式:PDF 页数:14 大小:293KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

Lec07_RSM_student.pdf

Lec07_RSM_student.pdf

预览

免费试读已结束,剩余 4 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

18-660:NumericalMethodsforEngineeringDesignandOptimizationXinLiDepartmentofECECarnegieMellonUniversityPittsburgh,PA15213Slide1Overview„Lecture6:LinearEquationSolver^LUdecomposition^Choleskydecomposition„Lecture7:LinearRegression^Ordinaryleast-squaresregression^Minimaxoptimization^DesignofexperimentsSlide2LinearRegression„Linearregression(alsoreferredtoasresponsesurfacemodeling)iswidelyusedformanyengineeringproblems^Wedonotknowtheanalyticalformoff(x)^Butwecangenerateasetofsamplingpointsforf(x)^Fitanapproximatefunctionforf(x)fromthesesamplingpointsf(x)xSlide3LinearRegression„Majorstepsoflinearregression^Selectamodeltemplate(e.g.,polynomialfunction)^Generateanumberofsamplingpoints^Computeperformancevaluesatthesesamplingpoints^Createasetoflinearequationstosolvemodelcoefficients„Asimpleexample^f(x)=exp(x),x∈[-11]1,1]^WewillusethissimpleexampletoshowhowwecangenerallybuildaregressionmodelfromsamplingdataSlide4LinearRegressionExample„Step1:selectamodeltemplatef()x≈bx+c„Step2:generateanumberofsamplingpointsSlSamples12345x-1-0.500.51„Step3:computeperformancevaluesatthesesamplingpointsSamples12345f(x)0.36790.60651.00001.64872.7183Slide5LinearRegressionExample„Step4:createlinearequationsformodelcoefficientsf(x)≈bx+cSamples12345x-1-0.500.51f(x)0.36790.60651.00001.64872.7183⎡−11⎤⎡0.3679⎤⎢−0.51⎥⎢0.6065⎥⎢⎥⎡b⎤⎢⎥⎢01⎥⋅⎢⎥=⎢1.0000⎥i-thsamplingpoint⎢⎥⎣c⎦⎢⎥⎢0.51⎥⎢1.6487⎥⎣⎢11⎦⎥⎣⎢2.7183⎦⎥xvaluesf(x)valuesSlide6LinearRegressionExample„Step5:solveover-determinedlinearequations^#ofequationsisgreaterthan#ofcoefficients–over-determined^Noexactsolutionexiststosatisfyallequations,butwecanfindtheleast-squaressolution:A⋅α=BSlide7LinearRegressionExampleA⋅α=BminA⋅α−B2α2Slide8LinearRegressionExample⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥Msamples⎢A⎥⋅α=⎢B⎥(M>N)⎢⎥⎢⎥⎢⎥⎢⎥⎣⎢⎦⎥⎣⎢⎦⎥Ncoefficients„Thereareseveralpossiblewaystosolveover-determinedlinearequationsforlinearregression^Wewillexplainthesealgorith