如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
会计学第四章移动通信中的数字调制与解调在第二章中已较详细分析过移动信道,本章将针对传输的可靠性问题将移动信道与移动通信系统结合起来分析。在移动通信中,若假设信道满足线性时变特性,则根据不同环境条件,可以给出下列各种类型的移动信道与相应的移动通信系统的物理模型,如下图所示。4.1移动通信系统的物理模型4.1.1理想加性白色高斯(AWGN)信道C14.1.2慢衰落信道C24.1.3快衰落信道C3、C4、C5与C6由于用户高速移动导致的频率扩散即多普勒频移而引入的时间选择性衰落。它在高速移动通信尤为突出。其最为有效的克服方法是采用信道交织编码技术,即将由于时间选择性衰落带来的大突发性差错信道改造成为近似性独立差错的AWGN信道。上述三种类型快衰落信道可分别记为C3、C4和C5。若将时变因子单独予以考虑,则可以构成时变信道C6。但是实际的衰落信道特别是各类快衰落信道与时变特性是密不可分的,仅有慢衰落的时变特性可以单独予以考虑。上述移动信道物理模型在实际问题中往往可以分为下列四个常用信道模型:1.AWGN信道模型:这类信道服从正态(高斯)分布,是恒参信道中最典型的一类信道,也是无线移动信道等变参信道的努力方向和改造目标。2.阴影衰落信道:这类信道服从对数正态分布,它是研究无线移动信道的基础。3.平坦瑞利衰落信道:这类信道遵从瑞利或者莱斯(RICE)分布,它是最典型的宽带无线和慢速移动的信道模型。在快衰落中仅仅考虑了空间选择性衰落。4.选择性衰落信道,它可分为两类:频率选择性衰落信道,是典型的宽带无线和慢速移动信道;时间选择性衰落信道,是典型的宽带无线和快速移动信道。4.1.4传输可靠性与抗衰落、抗干扰性能4.1移动通信系统的物理模型3.快衰落:它是由传输中角度域、时间域和频率域扩散而引起的空间、频率与时间选择性衰落,又称为小尺度特性。①空间选择性衰落:它是由系统及传输中角度扩散而引起的通常又称为平坦瑞利衰落。②频率选择性衰落,它是由传播中多径产生的时延功率谱即时域的扩散而引入的。③时间选择性衰落:它是由移动终端快速运动形成的多普勒频移即频域扩散而引入的以上三类快衰落及其抵抗措施与性能的改善而带来的抗衰落潜在增益和抗白噪声干扰的潜在增益可以利用下图表示。4.1移动通信系统的物理模型从以上图形及分析,可以很清楚看出,移动信道是一类极其恶劣的信道,必须采用多种抗衰落、抗干扰手段才能保证可靠通信,从总体上来看:1.对付大尺度传播特性所引入的衰耗仅能靠增大设备能力的方式。2.对付中尺度传播特性的慢衰落,一般可采用链路自适应方式,对于电路型话音业务适宜于采用功控的功率自适应;而对于分组型数据业务则适宜于链路的速率自适应。其潜在抗慢衰落能力(增益)大约为20dB左右。对付小尺度的快衰落,对于克服平坦瑞利(空间选择性)衰落,当误码率时,大约有28dB左右的潜在增益;若再进一步考虑频率与时间选择性衰落,当时,有大于30dB潜在增益。对于加性白噪声(AWGN)信道,其调制潜在增益大约为6dB;其编码潜在增益,对于时,大约为7-8dB左右。上述分析对于慢时变信道,必需依据准确的信道估计技术,否则将带来一定程度的性能恶化。4.2.1调制/解调的基本功能综上所述,在移动通信中对调制方式的选择主要有三条:首先是可靠性,即抗干扰性能,选择具有低误比特率的调制方式,其功率谱密度集中于主瓣内;其次是有效性,它主要体现在选取频谱有效的调制方式上,特别是多进制调制;第三是工程上易于实现,它主要体现在恒包络与峰平比的性能上。4.2.2数字式调制/解调的分类若将上述由0与1组成的基带二进制调制进一步推广至多进制信号,将产生相应的MASK、MFSK、MPSK和MQAM调制。在实际的移相键控方式中,为了克服在接收端产生的相位模糊度,往往将绝对移相改为相对移相DPSK以及DQPSK。另外在实际移相键控调制方式中,为了降低已调信号的峰平比,又引入了偏移QPSK(OQPSK)、π/4-DQPSK、正交复四相移键控CQPSK,以及混合相移键控HPSK等等。在二进制基带调制之中,为了彻底消除由于相位跃变带来的峰平比增加和频带扩展,又引入了有记忆的非线性连续相位调制CPM,最小频移键控MSK,GMSK(高斯型MSK)以及平滑调频TFM等。上述各类调制中仅有后一类,即CPM,MSK,GMSK和TFM属于有记忆的非线性调制,其余各类调制均属于无记忆的线性调制。上述调制中最基本的调制为2ASK、2FSK、BPSK,后面将重点分析它们。移动通信中最常用的调制方式有两大类:1986年以前由于线性高功放未取得突破性的进展,移动通信中调制技术青睐于恒包络调制的MSK和GMSK,比如GSM系统采用的就是GMSK调制,但是它实现较复杂,且频谱效率较低。1986年以后,由于实