如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
染料敏化太阳能电池的概况目前电池方面最有前景的莫过于染料敏化太阳能电池,它的发展前景十分广阔。但是它的研究历史其实可以追溯到19世纪早期的照相术。1837年,Daguerre制出了世界上第一张照片。两年后,FoxTalbot将卤化银用于照片制作,但是由于卤化银的禁带宽度较大,所以相片质量并没有得到很大的提高。1883年,HYPERLINK"http://baike.baidu.com/view/3762.htm"\t"_blank"德国光电化学专家Vogel发现有机染料能使卤化银乳状液对更长的波长敏感,这是对染料敏化效应的最早报导。使用有机染料分子可以扩展卤化银照相软片对可见光的响应范围到红光甚至红外波段,这使得“全色”宽谱黑白胶片乃至现在的彩色胶片成为可能。1887年,Moser将这种染料敏化效应用到卤化银电极上,从而将染料敏化的概念从照相术领域延伸到光电化学领域。1964年,Namba和Hishiki发现同一种染料对照相术和光电化学都很有效。这是染料敏化领域的重要事件,只是当时不能确定其机理,即不确定敏化到底是通过电子的转移还是通过能量的转移来实现的。直到20世纪60年代,德国的Tributsch发现了染料吸附在半导体上并在一定条件下产生电流的机理,才使人们认识到光照下电子从染料的基态跃迁到激发态后继而注入半导体的导带的光电子转移是造成上述现象的根本原因。这为光电化学电池的研究奠定了基础。但是由于当时的光电化学电池采用的是致密半导体膜,染料只能在膜的表面单层吸附,而单层染料只能吸收很少的太阳光,多层染料又阻碍了电子的传输,因此光电转换效率很低,达不到应用水平。后来人们制备了分散的颗粒或表面积很大的电极来增加染料的吸附量,但一直没有取得非常理想的效果。1988年,Grätzel小组用基于Ru的染料敏化粗糙因子为200的多晶二氧化钛薄膜,用Br2/Br-氧化还原电对制备了太阳能电池,在单色光下取得了12%的转化效率,这在当时是最好的结果了。直到1991年,Grätzel在O’Regan的启发下,应用了O’Regan制备的比表面积很大的纳米TiO2颗粒,使电池的效率一举达到7.1%,取得了染料敏化太阳能电池领域的重大突破。应当说,纳米技术促进了染料敏化太阳能电池的发展主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。工作原理⑴染料分子受太阳光照射后由基态跃迁至激发态;⑵处于激发态的染料分子将电子注入到半导体的导带中;⑶电子扩散至导电基底,后流入外电路中;⑷处于氧化态的染料被还原态的电解质还原再生;⑸氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;⑹注入到TiO2导带中的电子和氧化态染料间的复合(7)导带上的电子和氧化态的电解质间的复合研究结果表明:只有非常靠近TiO2表面的敏化剂分子才能顺利把电子注入到TiO2导带中去,多层敏化剂的吸附反而会阻碍电子运输;染料色激发态寿命很短,必须与电极紧密结合,最好能化学吸附到电极上;染料分子的光谱响应范围和量子产率是影响DSC的光子俘获量的关键因素。到目前为止,电子在染料敏化二氧化钛纳米晶电极中的传输机理还不十分清楚,有待进一步研究。目前研究情况通过近十八年的研究与优化,染料敏化太阳能电池的效率已经超过了11%。这种电池的突出优点是高效率、低成本、制备简单,因此有望成为传统硅基太阳能电池的有力竞争者。作为一种“取之不尽、用之不竭”的洁净的天然能源,太阳能成为最有希望的能源之一。目前研究和应用最广泛的太阳能电池主要是硅系太阳能电池,但硅系电池原料成本高、生产工艺复杂、效率提高潜力有限,其光电转换效率的理论极限值为30%,因此其民用化受到技术性限制,急需开发低成本的太阳能电池。人工制造的“树叶”染料敏化太阳能电池价格相对低廉,制作工艺简单,拥有潜在的高光电转换效率,所以极有可能取代传统硅系太阳能电池,成为未来太阳能电池的主导。上个世纪90年代初,染料敏化纳米晶太阳能电池DSSCs初露峥嵘,其光电转换效率达7.1%—7.9%,开创了太阳能电池研究和发展的全新领域。随后Gatzel和同伴开发出了光电能量转换效率达10%—11%的DSSCs。目前,在标准条件下,染料敏化太阳能电池的能量转化效率已达到11.2%,如果你知道树叶的结构,你会很好地理解DSSCs。从结构上来看,DSSCs就像人工制作的树叶,只是植物中的叶绿素被敏化剂所代