强化训练广东茂名市高州中学数学九年级下册锐角三角函数章节测评试题(解析版).docx
上传人:雨巷****彦峰 上传时间:2024-09-12 格式:DOCX 页数:8 大小:263KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

强化训练广东茂名市高州中学数学九年级下册锐角三角函数章节测评试题(解析版).docx

强化训练广东茂名市高州中学数学九年级下册锐角三角函数章节测评试题(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东茂名市高州中学数学九年级下册锐角三角函数章节测评考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在ABC中,∠C=90°,∠ABC=30°,D是AC的中点,则tan∠DBC的值是()A.B.C.D.2、已知,在矩形中,于,设,且,,则的长为()A.B.C.D.3、请比较sin30°、cos45°、tan60°的大小关系()A.sin30°<cos45°<tan60°B.cos45°<tan60°<sin30°C.tan60°<sin30°<cos45°D.sin30°<tan60°<cos45°4、已知在Rt△ABC中,∠C=90°,∠A=60°,则tanB的值为()A.B.1C.D.25、在直角△ABC中,,,AC=2,则tanA的值为()A.B.C.D.6、如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则∠A的正切值是()A.B.C.2D.7、cos60°的值为()A.B.C.D.18、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A.:B.:C.:D.:9、如图,在△ABC中,∠C=90°,BC=5,AC=12,则tanB等于()A.B.C.D.10、如图,AB是的直径,点C是上半圆的中点,,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、矩形ABCD中,E为边AB上一点,将沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若,.(1)矩形ABCD的面积为________;(2)的值为_________.2、如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为____或___3、正八边形的半径为6,则正八边形的面积为________.4、如图所示,某商场要在一楼和二楼之间搭建扶梯,已知一楼与二楼之间的地面高度差为米,扶梯的坡度,则扶梯的长度为_________米.5、如图所示为4×4的网格,每个小正方形的边长均为1,则四边形AECF的面积为________;tan∠FAE=_______6、某人沿着坡度为1∶2.4的斜坡向上前进了130m,那么他的高度上升了_________m.7、准备在一个“7”字型遮阳棚下安装一个喷水装置(如图1),已知遮阳棚DB与竖杆OB垂直,遮阳棚的高度OB=3米,喷水点A与地面的距离OA=1米(喷水点A喷出来的水柱呈抛物线型),水柱喷水的最高点恰好是遮阳棚的C处,C到竖杆的水平距离BC=2米(如图2),此时水柱的函数表达式为_____,现将遮阳棚BD绕点B向上旋转45°(如图3),则此时水柱与遮阳棚的最小距离为____米.(保留根号)8、如图,大坝的横截面是一个梯形,坝顶宽,坝高,斜坡的坡度,斜坡的坡度,则坡底宽__________.9、若一个小球由桌面沿着斜坡向上前进了10cm,此时小球距离桌面的高度为5cm,则这个斜坡的坡度为______.10、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求⊙O的半径.2、如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在x轴的负半轴上,点C在y轴的正半轴上,直线BC的解析式为y=kx+12(k≠0),AC⊥BC,线段OA的长是方程x2﹣15x﹣16=0的根.请解答下列问题:(1)求点A、点B的坐标.(2)若直线l经过点A与线段BC交于点D,且tan∠CAD=,双曲线y=(m≠0)的一个分支经过点D
立即下载