NP完全问题.doc
上传人:sy****28 上传时间:2024-09-13 格式:DOC 页数:3 大小:30KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

NP完全问题.doc

NP完全问题.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

NP完全问题NP完全问题,是世界七大数学难题之一。NP的英文全称是Non-deterministicPolynomial的问题,即多项式复杂程度的非确定性问题。简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。概述NP完全问题是不确定性图灵机在P时间内能解决的问题,是HYPERLINK"http://baike.baidu.com/view/521722.htm"\t"_blank"世界七大数学难题之一。NP完全问题排在百万美元大奖的首位,足见他的显赫地位和无穷魅力。数学上著名的HYPERLINK"http://baike.baidu.com/view/158424.htm"\t"_blank"NP问题,完整的叫法是NP完全问题,也即“NPCOMPLETE”问题,简单的写法,是NP=P?的问题。问题就在这个问号上,到底是NP等于P,还是NP不等于P。证明其中之一,便可以拿百万美元大奖。这个奖还没有人拿到,也就是说,NP问题到底是Polynomial(意思是多项式的),还是Non-Polynomial,尚无定论。NP里面的N,不是Non-Polynomial的N,是Non-Deterministic(意思是非确定性的),P代表Polynomial倒是对的。NP就是Non-deterministicPolynomial的问题,也即是多项式复杂程度的非确定性问题。非确定性问题详解什么是非确定性问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。解释人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。方法解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。前段时间轰动世界的一个数学成果,是几个印度人提出了一个新算法,可以在多项式时间内,证明某个数是或者不是质数,而在这之前,人们认为质数的证明,是个非多项式问题。可见,有些看来好象是非多项式的问题,其实是多项式问题,只是人们一时还不知道它的多项式解而已。如果判定问题π∈NP,并且对所有其他判定问题π∈NP,都有π'多项式变换到π(记为π'∞π),则称判定问题π是NP完全的。对P类,NP类及NP完全问题的研究推动了计算复杂性理论的发展,产生了许多新概念,提出了许多新方法。但是还有许多难题至今没有解决,P=NP?就是其中之一。许多学者猜想P≠NP,但无法证明。简述:一个NP-完全的问题具有如下性质:它可以在HYPERLINK"http://baike.baidu.com/view/2882625.htm"\t"_blank"多项式时间内求解,当且仅当所有的其他的NP-完全问题也可以在多项式时间内求解。P是所有可在多项式时间内用确定算法求解的判定问题的集合。NP问题是所有可用多项式时间算法验证其猜测准确性的问题的集合。令L1和L2是两个问题,如果有一确定的多项式时间算法求解L1,而这个算法使用了一个在多项式时间内求解L2的确定算法,则称L1约化为L2。如果可满足性约化为一个问题L,则称L问题是NP-难度的。如果L是NP难度的且L(-NP,则称L是NP-完全的。NP并不是NON-POLYNOMIA