新人教版八年级数学下册期末知识点总结归纳.docx
上传人:王子****青蛙 上传时间:2024-09-13 格式:DOCX 页数:5 大小:210KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

新人教版八年级数学下册期末知识点总结归纳.docx

新人教版八年级数学下册期末知识点总结归纳.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子(≥0)叫做二次根式。2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。(>0)(<0)0(=0);4.二次根式的性质:(1)()2=(≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。3.直角三角形的性质(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。∠A=30°可表示如下:BC=AB∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下:CD=AB=BD=ADD为AB的中点4、直角三角形的判定1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。5、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。四边形1.四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°.2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180°;(2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6.矩形的判定:四边形ABCD是矩形.7.菱形的性质:因为ABCD是菱形8.菱形的判定:四边形四边形ABCD是菱形.9.正方形的性质:因为ABCD是正方形(1)(2)(3)10.正方形的判定:四边形ABCD是正方形.(3)∵ABCD是矩形又∵AD=AB∴四边形ABCD是正方形11.等腰梯形的性质:因为ABCD是等腰梯形12.等腰梯形的判定:四边形ABCD是等腰梯形(3)∵ABCD是梯形且AD∥BC∵AC=BD∴ABCD四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。三、求函数解析式的方法:待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.