湘教初中数学八上《223-证明与反证法》(第1课时)教案--(2).docx
上传人:Th****84 上传时间:2024-09-11 格式:DOCX 页数:3 大小:28KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

湘教初中数学八上《223-证明与反证法》(第1课时)教案--(2).docx

湘教初中数学八上《223-证明与反证法》(第1课时)教案--(2).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.2.3证明与反证法预设目标1.使学生初步掌握反证法的概念及反证法证题的基本方法.2.培养学生用反证法简单推理的技能,从而发展学生的思维能力.教学重难点重点:反证法证题的步骤.难点:理解反证法的推理依据及方法.教具准备三角尺教法学法讲练结合教学教学过程提问:共分三步:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.反证法是一种间接证明命题的基本方法。在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。二、探究P57例题2已知:∠A,∠B,∠C是△ABC的内角。求证:∠A,∠B,∠C中至少有一个角大于或等于600课本上这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。象这样的证明方法叫做反证法。三、应用新知例1在△ABC中,AB≠AC,求证:∠B≠∠C证明:假设,∠B=∠C,则AB=AC这与已知AB≠AC矛盾.假设不成立.∴∠B≠∠C小结:反证法的步骤:假设结论的反面不成立→逻辑推理得出矛盾→肯定原结论正确例2已知:如图有a、b、c三条直线,且a//c,b//c.求证:a//b证明:假设a与b不平行,则可设它们相交于点A。那么过点A就有两条直线a、b与直线c平行,这与“过直线外一点有且只有一条直线与已知直线平行矛盾,假设不成立。∴a//b.小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾三、练习1、求证:在一个三角形中,至少有一个内角小于或等于60°。已知:△ABC,求证:△ABC中至少有一个内角小于或等于60°证明:假设△ABC中没有一个内角小于或等于60°则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180°即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立.∴△ABC中至少有一个内角小于或等于60°2、试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.(学生完成,教师引导)已知:;求证:;证明:假设,则可设它们相交于点A。那么过点A就有条直线与直线c平行,这与“过直线外一点”。矛盾,则假设不成立。∴。四、课时小结本节重点研究了反证法证题的一般步骤及反证法证明命题的应用。对于反证法的熟练掌握还需在今后随着学习的深入,逐步加强和提高。板书设计2.2.3证明与反证法(2)1.反证法证明命题的步骤。2.反证法应用:例题。作业P60B组9教学反思