PSO与GA结合算法Hybridparticleswarmoptimizerwithbreeding.pdf
上传人:sy****28 上传时间:2024-09-13 格式:PDF 页数:8 大小:257KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

PSO与GA结合算法Hybridparticleswarmoptimizerwithbreeding.pdf

PSO与GA结合算法Hybridparticleswarmoptimizerwithbreedingandsubpopulation.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

HybridParticleSwarmOptimiserwithBreedingandSubpopulationsMortenLøvbjergThomasKielRasmussenThiemoKrinkEvALifeprojectgroupEvALifeprojectgroupEvALifeprojectgroupDept.ofComputerscienceDept.ofComputerscienceDept.ofComputerscienceUniversityofAarhusUniversityofAarhusUniversityofAarhusDK-8000AarhusCDK-8000AarhusCDK-8000AarhusCDenmarkDenmarkDenmarklovbjerg@daimi.au.dkkiel@daimi.au.dkkrink@daimi.au.dkphone:+4589423357phone:+4589423357phone:+4589423358AbstractofthestandardGAandthePSO,couldleadtofurtherad-vances.InthispaperwepresenttwohybridParticleWepresentsuchahybridmodel.ThemodelincorporatesSwarmOptimiserscombiningtheideaofthepar-onemajoraspectofthestandardGAintothePSO,there-ticleswarmwithconceptsfromEvolutionaryAl-production.Inthefollowingwewillrefertotheusedre-gorithms.ThehybridPSOscombinethetradi-productionandrecombinationofgenesonlyas“breeding”.tionalvelocityandpositionupdateruleswiththeBreedingisoneofthecoreelementsthatmakesthestan-ideasofbreedingandsubpopulations.Bothhy-dardGAapowerfulalgorithm.HenceourhypothesiswasbridmodelsweretestedandcomparedwiththethataPSOhybridwithbreedinghasthepotentialtoreachstandardPSOandstandardGAmodels.ThisisabetteroptimumthanthestandardPSO.donetoillustratethatPSOswithbreedingstrate-Inadditiontobreedingweintroduceahybridwithbothgieshavethepotentialtoachievefasterconver-breedingandsubpopulations.Subpopulationshavepre-genceandthepotentialtofindabettersolution.viouslybeenintroducedtostandardGAmodelsmainlyTheobjectiveofthispaperistodescribehowtotopreventprematureconvergencetosuboptimalpointsmakethehybridsbenefitfromgeneticmethods([Spears94]).OurmotivationforthisextensionwasthattheandtotesttheirpotentialandcompetetivenessonPSOmodels,includingthehybridPSOwithbreeding,alsofunctionoptimisation.reachsuboptimalsolutions.Breedingbetweenparticlesindifferentsubpopulationswasalsoaddedasaninteractionmechanismbetweensubpopulations.1IntroductionTheintroducedhybridsweretestedagainstbothstandardTheParticleSwarmOptimisation