小学生数学教学反思.docx
上传人:a是****澜吖 上传时间:2024-09-13 格式:DOCX 页数:21 大小:25KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

小学生数学教学反思.docx

小学生数学教学反思.docx

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

小学生数学教学反思小学生数学教学反思作为一名到岗不久的人民教师,我们的任务之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,那么教学反思应该怎么写才合适呢?下面是小编帮大家整理的小学生数学教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。小学生数学教学反思11、在自主活动中享受学习的乐趣,喜欢数学有人说“思维的火花在于指间”,通过动手做,学生的思维得到了激发。实践证明,让他们投入到丰富的学习活动中去,动起来,是一种行之有效的途径。所以在本节课的教学中,我提供给学生许多不同的学具,以小组的形式,让学生自己选择喜欢的学具制作平行四边形,让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。通过在钉子板上围一围,方格纸上画一画,吸管摆一摆探索发现“对边相等”这一特征。通过用直尺在白纸上画一画,发现“对边平行”这一特征。用图形摆一摆,发现平行四边形和其它图形的关系。当学生通过动手动脑,在探索中初步发现平行四边形的特征。这些发现,对于小学生来说则是他们利用自己已有的`知识经验,在独立操作、独立观察、测量、思考以及相互讨论的基础上得出的“新发现”,这就是他们的创造。教学到这里,我又不失时机地引导他们去验证,对“全新发现”作出积极的评价。通过说一说,让学生不仅深刻理解平行四边形的特征,使感性认识上升为理性认识,而且进一步激发学生探索、研究的欲望,通过大胆尝试、探索,感受数学的乐趣,激起学习的热情。2、在探索发现中体验成功的喜悦,拥有自信布鲁纳说过,探索是数学的生命线,没有探索,便没有数学的发展。数学家弗赖登塔尔也说过,学习数学的唯一正确方法是实行“再创造”,教师的任务是引导和帮助学生去进行再创造,而不是把现成的知识灌输给学生。本节课的教学,我力图通过适当的引导,启发学生自己去主动探索和发现知识,在此过程中体验成功的喜悦,增强学习知识的自信心。教学为着这个目标去努力,也实现了这个目标。在整个教学过程中,平行四边形的特征是学生自己动手、动脑,探索和发现获得的,而不是我教给他们的。我先让学生“做一做——看一看——说一说”来感知平行四边形的特征,为学生创设了继续探索的空间。我鼓励每一个孩子根据自己的情趣、愿望和能力,用自己的方式去操作、去探究、去学习。仔细地观察,自由地表述,培养孩子成为学习的主人。小学生数学教学反思2《数的世界》是一节数学概念课,即教学因数和倍数。在老教材中是先建立整除的概念,再在此基础上认识因数倍数;而现在是在未认识整除的情况下用乘法算式直接认识倍数和因数。数学中的“起始概念”一般比较难教,而这部分内容学生是初次接触,对于学生来说是比较难掌握的。根据本节课知识的特点和学生的认知规律,在教学中我注重体现以学生为主体的新理念,努力为学生的探究发现提供足够的空间。由于这是节概念课,因此有不少东西是由老师告知的,比如因数和倍数的概念。在认识了各类数之后,我创设有效了数学学习情境,让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式直接告知因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从具体到抽象,让学生自主体验数与形的结合,进而形成因数与倍数的意义,使学生初步建立了“因数与倍数”的概念。为了突破本课的难点,我通过变式拓展,实践应用,促进了学生的智能内化。在理解因数和倍数中,我认为有两个关键性的问题是学生比较容易混淆的,第一就是因数和倍数的范围(非零自然数),我是这样处理的:通过一组算式让学生说谁的谁的因数,谁是谁的倍数,如3×5=156×8=489×4=3612×5=60等,学生越说越顺口,越说越有劲,我突然抛出了1.5×6=9这个算式,结果有同学陷入了沉思(我认为这些同学感觉到了与刚刚的哪些算式有点不一样),但也有同学还是举手这样答道:1.5和6是9的因数,9是1.5和6的倍数,话一说完,就见那些沉思的同学有几个高高举起了手,迫不及待的说:我们说研究因数和倍数是在非零的自然数范围里,可这里的1.5不是自然数,所以不可以说1.5和6是9的因数,9是1.5和6的倍数。我就趁热打铁,组织学生进行热烈的讨论,同学们统一了认识,真正认识到了因数和倍数的范围,从而为理解概念打好了坚实的基础。而第二个关键性的问题我认为就是因数和倍数的相互依存的关系,我采取了几个递进的环节进行处理:一开始我就直接告知,让学生鹦鹉学舌。如通过学生写的3×4=12这个算式,我就说,这时3和4是12的因数,12是3和4的倍数。通过一些类似的乘法算式让学生试着说,很快学生就有了第一感性认识;接着我用一个游戏让学生理解因数和倍数的相互依存,我举了三个数字卡片,分别是3、6和12,让学生很快说出谁是谁的.因数,谁是谁的倍数?为什么?学生很快找到了3是6和12