如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
AttitudeEstimationbasedonExtendedKalmanFilterHanPingHeWeikunMarch9,2011SUPAEROTALBEOFCONTENTSProblemdescriptionExtendedKalmanFilterSystemmodelSystemstructurediagramExperimentresultsConclusionsSomeproblemsintheexperimentProblemdescriptionNavigationistheprocessofcomputingtheposition,orientationandspeedofairplane.Oneoftheimportanttasksoftheinertialnavigationsystemsistointegratetheoutputofaccelerometersandmagneticmeterstoobtainvelocityandattitudeofairplane,whichisnormallyaccomplishedbyKalmanFilter.Nowadays,navigationtechniquebasedonKalmanFilterhasbeenwellusedinmanyproducts,suchasCHR-6dmAHRSsystemandSBGsystem.TheCHR-6dmAHRSisacost-effectiveorientationsensorprovidingyaw,pitch,androllangleoutputsatupto300Hz.AnExtendedKalmanFilter(EKF)combinesdatafromonboardaccelerometers,rategyros,andmagneticsensorstoproduceyaw,pitch,androllangleestimates.SBGsystemoffersacompletelineofminiatureandhighperformanceinertialsystems,3Dcompass,inclinometersandaccelerometers.Itsperformance,reliabilityandeaseofusehavebeenkepttothehighestlevels,butitismoreexpensivecomparedwithCHRsystem.ThepriceofCHRsystemismorethan$100(about60€),whileSBGsystemismorethan1000€.OurtaskinthisprojectistoimprovetheperformanceofCHRsystemtoinsteadSBGsystemusedinthelabplane.InCHRsystem,wecanobtainthefollowingparametersfromtheratesensors,accelerometersandmagnetometersrespectively:angularrates(CHR_gyro)gravityrates(CHR_acc)localmagneticfieldvector(CHR_mag)Astheabovedatasetsareverynoisy,weneedtodesignagoodKalmanFiltertoestimatetheplane’sattitude(pitch,roll,yaw,angularrate).ExtendedKalmanFilterKalmanfiltercomputesthesolutionrecursively.Eachupdatedestimateofthestateiscomputedfromthepreviousestimationandthenewinputdata.Foranonlinearsystem,theKalmanfiltermodelis(1)where,xissystemstatevector,udenotesinput,yisoutput,wandvarenoisecorrespondingtothestateequationandoutputequationrespectively.meansnonlineartransformfunctionfromthecurrentsystemstatetothenextstate.presentsano