考研数学心得2022汇总.docx
上传人:一吃****成益 上传时间:2024-09-10 格式:DOCX 页数:24 大小:25KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

考研数学心得2022汇总.docx

考研数学心得2022汇总.docx

预览

免费试读已结束,剩余 14 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

考研数学心得2022汇总考研数学心得1考研数学线性代数和概率论▶难点事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通。这门课由于思维上与高数南辕北辙,所以一上来会很不适应。总体而言,6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门。▶学习规划总的来说,线性代数这本书6章内容应该分为三个部分逐个攻破:首先行列式和矩阵,第二向量与方程组,第三第5和第六章。这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系。最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是什么,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算。在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。▶视频学习法线性代数:不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了。概率论:如果基础不好的话,可以参考一下中国科技大学缪柏其老师的视频,或者南京理工大学,陈萍老师的视频,这些网上都有,还可以下载。▶做题与总结对于这两门课,做题一定要建立在完成知识点的总结的基础上,不要光呆呆的看书,这样你会一直没有进步。一定要拿起笔,书上写得再好也还是编者老师的东西,只有自己总结的才是自己的。每一个知识点有哪些题型,每个知识点是什么意思,他能干什么,他想干什么,请你一定要罗列在一个本子上面,最后根据这个大纲来一个各个击破,讲每个部分的内容所出现的题型,一口气做20道,在总结相应的思路,同时打开自己总结的笔记,来一个反馈。▶笔记最好将自己的总结笔记分成两类,一类是知识点笔记,一类是题型思路归纳,这样一来反馈学习效果更明显,思路更清晰。▶多问自己一定要发现自己哪里不会,比如说你是行列式计算有问题,那就好了行列式计算一共就只有7种方法,逐个击破,如果是向量的证明题不会,好了首先搞明白线性有关线性无关的概念,再比如说你觉得级数难,你学的不好,那么你就要问自己是哪里学的不好?是不会判断收敛性?收敛性的判断只有五种方法,请逐个击破。是和函数求和与幕级数展开不会?那好了就将这种题型找出20个来,用一个上午连续做,中间不要停,你就会发现方法无非是分开,积分求导,往公式上套。所以要先对知识点系统的总结,这样你才能发现自己哪里不会,也就是找到你知识的盲点误区。说了这么多还是要先对你要学的科目进行知识点的总结,形成一个指针连,或二叉树,做题就是强化所学,归纳出相应的方法思路。希望我说了这么多可以对同学们有所帮助!祝大家成功!考研数学一元函数微分学常考的题型▶一元函数微分学有四大部分1、概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;2、运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求导公式等;3、理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;4、应用部分,重点是利用导数研究函数的性态(包括函数的单调性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用洛必达法则求极限,以及导数在经济领域的应用,如“弹性”、“边际”等等。常见考察题型1、求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。2、利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如“证明在开区间至少存在一点满足……”,或讨论方程在给定区间内的根的个数等。此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发“递推”出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。3、利用洛必达法则求七种未定型的极限。4、几何、物理、经济等方面的最大值、最小