小卷练透广东茂名市高州中学数学九年级下册锐角三角函数难点解析B卷(解析版).docx
上传人:Ja****23 上传时间:2024-09-12 格式:DOCX 页数:7 大小:228KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

小卷练透广东茂名市高州中学数学九年级下册锐角三角函数难点解析B卷(解析版).docx

小卷练透广东茂名市高州中学数学九年级下册锐角三角函数难点解析B卷(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东茂名市高州中学数学九年级下册锐角三角函数难点解析考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C′处,若AB=4,DE=8,则sin∠C′ED为()A.2B.C.D.2、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米.若栏杆的旋转角,则栏杆A端升高的高度为()A.米B.米C.米D.米3、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,,则的值是()A.20B.20C.-5D.54、请比较sin30°、cos45°、tan60°的大小关系()A.sin30°<cos45°<tan60°B.cos45°<tan60°<sin30°C.tan60°<sin30°<cos45°D.sin30°<tan60°<cos45°5、如图,等腰Rt△ABC中,∠C=90°,AC=5,D是AC上一点,若tan∠DBA=,则AD=()A.1B.2C.D.26、如图,过点O、A(1,0)、B(0,)作⊙M,D为⊙M上不同于点O、A的点,则∠ODA的度数为()A.60°B.60°或120°C.30°D.30°或150°7、cos60°的值为()A.B.C.D.18、如图,在Rt△ABC中,∠ABC=90°,BD是AC边上的高,则下列选项中不能表示tanA的是()A.B.C.D.9、如图,飞机于空中A处测得目标B处的俯角为,此时飞机的高度AC为a,则A,B的距离为()A.atanB.C.D.cos10、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、△ABC中,∠B为锐角,cosB=,AB=,AC=2,则∠ACB的度数为________.2、在正方形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF=DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是______.①tan∠GFB=.②MN=NC;③.④S四边形GBEM=.3、如图公路桥离地面的高度AC为6米,引桥AB的水平宽度BC为24米,为降低坡度,现决定将引桥坡面改为AD,使其坡度为1:6,则BD的长____.4、如图,在平面直角坐标系xOy中,点B在x轴正半轴上,点D在y轴正半轴上,⊙C经过A,B,D,O四点,∠OAB=120°,OB=4,则点D的坐标是_____.5、已知正方形ABCD中,AB=2,⊙A是以A为圆心,1为半径的圆,若⊙A绕点B顺时针旋转,旋转角为α(0°<α<180°),则当旋转后的圆与正方形ABCD的边相切时,α=_____.6、如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,,点P是OC上的一个动点,则BP+DP的最小值为______.7、cos30°的相反数是_____.8、△ABC中,AB=4,AC=5,△ABC的面积为5,那么∠A的度数是_________.9、如图,大坝的横截面是一个梯形,坝顶宽,坝高,斜坡的坡度,斜坡的坡度,则坡底宽__________.10、如图,在中,是斜边上的中线,点是直线左侧一点,联结,若,则的值为______.三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,.求:(1)AC的值(2)sinC的值.2、【问题背景】如图1,P是等边△ABC内一点,∠APB=150°,则PA2+PB2=PC2.小刚为了证明这个结论,将△PAB绕点A逆时针旋转60°,请帮助小刚完成辅助线的作图;【迁移应用】如图2,D是等边△ABC外一点,E为CD上一点,AD∥BE,∠BEC=120°,求证:△DBE是等边三角形;【拓展创新】如图3,EF=6,点C为EF的中点,边长为3的等边△ABC绕着点C在平面内旋转一周,直线AE、BF交于点P,M为PG的中点,EF⊥FG于F
立即下载