平行线的性质教案.docx
上传人:星星****眨眼 上传时间:2024-09-14 格式:DOCX 页数:41 大小:31KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

平行线的性质教案.docx

平行线的性质教案.docx

预览

免费试读已结束,剩余 31 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

平行线的性质教案平行线的性质教案在教学工作者开展教学活动前,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。来参考自己需要的教案吧!以下是小编为大家收集的平行线的性质教案,仅供参考,大家一起来看看吧。平行线的性质教案1一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单)。(1)要求学生任意画一条直线c与直线a、b相交;(2)选一对同位角来度量,看看这对同位角是否相等。学生归纳:两条平行线被第三条直线所截,同位角相等。二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的`认识。活动1问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。教师活动设计:引导学生讨论并回答。学生口答,教师板书,并要求学生学习推理的书写格式。活动2总结平行线的性质。性质2:两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。性质3:两条平行直线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。平行线的性质教案2教学目的1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.2.使学生了解平行线的性质和判定的区别.重点难点1.平行的三个性质,是本节的重点,也是本章的重点之一.2.怎样区分性质和判定,是教学中的一个难点.教学过程一、引入问:我们已经学习过平行线的哪些判定公理和定理?学生齐答:1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?学生答:1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.二、新课平行线的性质一:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.怎样说明它的正确性呢?方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.求证:∠1=∠2.证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2.∴A′B′∥CD(同位角相等,两直线平行).故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.∴∠1=∠2.另证:(同一法)过∠1顶点O作直线A′B′使∠E0B′=∠2.∴A′B′∥CD(同位角相等,两直线平行).∵AB∥CD(已知),且O点在AB上,O点在A′B′上,∴A′B′与AB重合(平行公理)∴∠1=∠2.平行线的性质二:两条平线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.证明:∵AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.已知:如图2-34,直线AB、CD被EF所截,AB∥CD.求证:∠2+∠4=180°.证法一:∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).证法二:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等).∵∠3+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知