图象检索中若干距离度量算法研究的中期报告.docx
上传人:快乐****蜜蜂 上传时间:2024-09-14 格式:DOCX 页数:2 大小:10KB 金币:5 举报 版权申诉
预览加载中,请您耐心等待几秒...

图象检索中若干距离度量算法研究的中期报告.docx

图象检索中若干距离度量算法研究的中期报告.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

5 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

图象检索中若干距离度量算法研究的中期报告Abstract:Thisreportfocusesonthestudyofdistancemetricalgorithmsinimageretrieval,includingEuclideandistance,Manhattandistance,Cosinesimilarity,andMahalanobisdistance.Acomparisonofthesealgorithmsbasedonperformance,robustness,andefficiencyisprovided.Inaddition,futuredevelopmentdirectionsandchallengesofdistancemetricalgorithmsinimageretrievalarediscussed.Introduction:Withtheincreasingamountofdigitalimagesavailable,imageretrievaltechniqueshavebecomeindispensabletoolsformanagingandorganizingtheimages.Distancemetricalgorithmsareessentialcomponentsofimageretrievalsystems,whichmeasurethesimilaritybetweenimagesbasedontheirfeatures.Theefficiencyandrobustnessofdistancemetricalgorithmsdirectlyaffecttheperformanceofimageretrievalsystems.Inthisreport,weinvestigateseveralwidelyuseddistancemetricalgorithmsinimageretrievalandcomparetheirperformancesbasedondifferentcriteria.DistanceMetricAlgorithms:Euclideandistanceisoneofthemostcommondistancemetricsusedinimageretrieval.Itmeasuresthestraight-linedistancebetweentwovectorsinthefeaturespace.Euclideandistanceissensitivetosmallchangesinthefeaturevaluesandcanbecomputationallyexpensiveforhigh-dimensionalfeaturespaces.Manhattandistance,alsoknownastheL1norm,measuresthedistancebysummingtheabsolutedifferencesbetweenelementsinthetwovectors.UnlikeEuclideandistance,Manhattandistanceislesssensitivetooutliersinhigh-dimensionalfeaturespacesandismorecomputationallyefficient.Cosinesimilaritymeasuresthesimilaritybetweentwovectorsbytakingthecosineoftheanglebetweenthem.Cosinesimilarityisparticularlysuitableforhigh-dimensionalfeaturespacesandisrelativelyinsensitivetochangesinthelengthofthevectors.Mahalanobisdistancetakesintoaccountthecovariancebetweenthefeaturedimensionsandmeasuresthedistancebetweentwovectorsinatransformedspace.Mahalanobisdistancecanhandlecorrelatedoruncorrelatedfeaturedimensionsandiseffectiveinremovingredundantinformation.Comparison:Wecomparethesefourdistancemetricalgorithmsbasedonthreeperformancecriteria:accu