专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数重点解析B卷(解析版).docx
上传人:一条****贺6 上传时间:2024-09-12 格式:DOCX 页数:7 大小:295KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数重点解析B卷(解析版).docx

专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数重点解析B卷(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东深圳市高级中学数学九年级下册锐角三角函数重点解析考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是().A.米B.米C.米D.米2、的值为()A.1B.2C.D.3、如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.B.C.D.4、△ABC中,tanA=1,cosB=,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形5、如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为.如果在坡度为的山坡上种植树,也要求株距为,那么相邻两树间的坡面距离约为()A.B.C.D.6、请比较sin30°、cos45°、tan60°的大小关系()A.sin30°<cos45°<tan60°B.cos45°<tan60°<sin30°C.tan60°<sin30°<cos45°D.sin30°<tan60°<cos45°7、如图,某停车场入口的栏杆,从水平位置绕点O旋转到的位置,已知的长为5米.若栏杆的旋转角,则栏杆A端升高的高度为()A.米B.米C.米D.米8、在Rt△ABC中,∠C=90°,sinA,则cosB等于()A.B.C.D.9、在ABC中,∠C=90°,若BC=4,,则AB的长为()A.6B.C.D.10、如图,一辆小车沿斜坡向上行驶米,小车上升的高度米,则斜坡的坡度是()A.:B.:C.:D.:第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_________.2、在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是:_____.3、如图,沿AE折叠矩形纸片,使点D落在BC边的点F处.已知,,则的值为_____.4、△ABC中,∠B为锐角,cosB=,AB=,AC=2,则∠ACB的度数为________.5、计算:2cos60°+(π﹣1)0=_____.6、准备在一个“7”字型遮阳棚下安装一个喷水装置(如图1),已知遮阳棚DB与竖杆OB垂直,遮阳棚的高度OB=3米,喷水点A与地面的距离OA=1米(喷水点A喷出来的水柱呈抛物线型),水柱喷水的最高点恰好是遮阳棚的C处,C到竖杆的水平距离BC=2米(如图2),此时水柱的函数表达式为_____,现将遮阳棚BD绕点B向上旋转45°(如图3),则此时水柱与遮阳棚的最小距离为____米.(保留根号)7、如图,在中,,,,以为边向外作等边,则的长为_______.8、如图,小明家附近有一观光塔CD,他发现当光线角度变化时,观光塔的影子在地面上的长度也发生变化.经测量发现,当小明站在点A处时,塔顶D的仰角为37°,他往前再走5米到达点B(点A,B,C在同一直线上),塔顶D的仰角为53°,则观光塔CD的高度约为_____.(精确到0.1米,参考数值:tan37°≈,tan53°≈)9、如图,在中,是斜边上的中线,点是直线左侧一点,联结,若,则的值为______.10、如图,ABC中,∠BAC>90°,BC=4,将ABC绕点C按顺时针方向旋转90°,点B的对应点落在BA的延长线上,若sin∠AC=0.8,则AC=___.三、解答题(5小题,每小题10分,共计50分)1、图1、图2分别是某型号拉杆箱的实物图与示意图,小张获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度:(2)直接写出拉杆端点A到水平滑杆ED所在直线的距离cm.2、.3、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;(2)若AD=2,求⊙O的半径.4、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为
立即下载