专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数难点解析练习题(解析版).docx
上传人:梅雪****67 上传时间:2024-09-12 格式:DOCX 页数:8 大小:399KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数难点解析练习题(解析版).docx

专题对点练习广东深圳市高级中学数学九年级下册锐角三角函数难点解析练习题(解析版).docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东深圳市高级中学数学九年级下册锐角三角函数难点解析考试时间:90分钟;命题人:校数学教研室考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,∠ACB=60○,半径为1的⊙O切BC于点C,若将⊙O在直线CB上沿某一方向滚动,当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.B.C.π或D.或2、如图所示,点C是⊙O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,∠AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A.150°,B.150°,2C.120°,D.120°,23、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A.4mB.8mC.2mD.1m4、已知正三角形外接圆半径为,这个正三角形的边长是()A.B.C.D.5、如图,在Rt△ABC中,∠ABC=90°,BD是AC边上的高,则下列选项中不能表示tanA的是()A.B.C.D.6、如图,△ABC的顶点在正方形网格的格点上,则cos∠ACB的值为()A.B.C.D.7、如图,若的半径为R,则它的外切正六边形的边长为()A.B.C.D.8、如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度为()A.B.C.D.9、如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为()A.B.C.D.10、如图,有一个弓形的暗礁区,弓形所含的圆周角,船在航行时,为保证不进入暗礁区,则船到两个灯塔A,B的张角应满足的条件是()A.B.C.D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题3分,共计30分)1、比较大小:tan46°_____cos46°.2、如图,矩形ABCD中,AB=4,AE=AD,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若F为CD中点,则BC的长为_____.3、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.4、规定:,,据此判断下列等式成立的是:_____.(写出所有正确的序号)①cos(﹣60º)=,②sin75º=,③,④5、如图,圆内接正十二边形由边长相等的六个正方形和六个等边三角形拼成,则图1中cos∠AOB=___,若圆O半径为,则图2中△BCD的面积为___.6、如图,在网格中,小正方形的边长均为1,点都在格点上,则的正弦值是_______.7、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,,且与交于点,连接,则下列结论:①;②;③;④;其中正确的是______.(填序号即可)8、正八边形的半径为6,则正八边形的面积为________.9、准备在一个“7”字型遮阳棚下安装一个喷水装置(如图1),已知遮阳棚DB与竖杆OB垂直,遮阳棚的高度OB=3米,喷水点A与地面的距离OA=1米(喷水点A喷出来的水柱呈抛物线型),水柱喷水的最高点恰好是遮阳棚的C处,C到竖杆的水平距离BC=2米(如图2),此时水柱的函数表达式为_____,现将遮阳棚BD绕点B向上旋转45°(如图3),则此时水柱与遮阳棚的最小距离为____米.(保留根号)10、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,点A、B在以CD为直径的⊙O上,且,∠BCD=30°.(1)判断ABC的形状,并说明理由;(2)若BC=cm,求图中阴影部分的面积.2、已知直线m与⊙O,AB是⊙O的直径,AD⊥m于点D.(1)如图①,当直线m与⊙O相交于点E、F时,求证:∠DAE=∠BAF.(2)如图②,当直线m与⊙O相切于点C时,若∠DAC=35°,求∠BAC的大小;(3)若PC=2,PB=2,求阴影部分的面积(结果保留π).3、如图1所示的是一辆混凝土布料机的实
立即下载